OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 36 — Dec. 20, 2004
  • pp: 6680–6687

Correction of phase distortion in spatial heterodyne spectroscopy

Christoph R. Englert, John M. Harlander, Joel G. Cardon, and Fred L. Roesler  »View Author Affiliations

Applied Optics, Vol. 43, Issue 36, pp. 6680-6687 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (201 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The detailed analysis of measured interferograms generally requires phase correction. Phase-shift correction methods are commonly used and well documented for conventional Fourier-transform spectroscopy. However, measured interferograms can show additional phase errors, depending on the optical path difference and signal frequency, which we call phase distortion. In spatial heterodyne spectroscopy they can be caused, for instance, by optical defects or image distortions, making them a characteristic of the individual spectrometer. They can generally be corrected without significant loss of the signal-to-noise ratio. We present a technique to measure phase distortion by using a measured example interferogram. We also describe a technique to correct for phase distortion and test its performance by using a simulation with a near-UV solar spectrum. We find that for our measured example interferogram the phase distortion is small and nearly frequency independent. Furthermore, we show that the presented phase-correction technique is especially effective for apodized interferograms.

© 2004 Optical Society of America

OCIS Codes
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

Original Manuscript: June 4, 2004
Manuscript Accepted: August 30, 2004
Published: December 20, 2004

Christoph R. Englert, John M. Harlander, Joel G. Cardon, and Fred L. Roesler, "Correction of phase distortion in spatial heterodyne spectroscopy," Appl. Opt. 43, 6680-6687 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Harlander, R. J. Reynolds, F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992). [CrossRef]
  2. J. M. Harlander, H. T. Tran, F. L. Roesler, K. P. Jaehnig, S. M. Seo, W. T. Sanders, R. J. Reynolds, “Field-widened spatial heterodyne spectroscopy: correcting for optical defects and new vacuum ultraviolet performance tests,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy V, O. E. Siegmund, J. Vallerga, eds., Proc. SPIE2280, 310–319 (1994). [CrossRef]
  3. J. M. Harlander, F. L. Roesler, J. G. Cardon, C. R. Englert, R. R. Conway, “SHIMMER: a spatial heterodyne spectrometer for remote sensing of Earth’s middle atmosphere,” Appl. Opt. 41, 1343–1352 (2002). [CrossRef] [PubMed]
  4. B. E. Laubscher, B. W. Smith, B. J. Cooke, P. C. LaDelfe, R. R. Berggren, P. V. Villeneuve, R. M. Goeller, G. M. Obbink, S. Milligan, J. W. Howard, P. R. Norton, M. Stegall, C. B. Burgett, J. M. Harlander, R. F. Horton, “Infrared imaging spatial heterodyne spectrometer (IRISHS) experiment effort,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, X, G. C. Holst, ed., Proc. SPIE3701, 194–205 (1999). [CrossRef]
  5. J. G. Cardon, C. R. Englert, J. M. Harlander, F. L. Roesler, M. H. Stevens, “SHIMMER on STS-112: development and proof-of-concept flight,” in AIAA Space 2003 Conference and Exposition (American Institute of Aeronautics and Astronautics, Reston, Va., 2003), AIAA paper 2003-6224.
  6. W. C. Martin, J. R. Fuhr, D. E. Kelleher, A. Musgrove, L. Podobedova, J. Reader, E. B. Saloman, C. J. Sansonetti, W. L. Wiese, P. J. Mohr, K. Olsen, “NIST Atomic Spectra Database (version 2.0, 1999),” http://physics.nist.gov/asd .
  7. M. L. Forman, W. H. Steel, G. V. Vanesse, “Correction of asymmetric interferograms obtained in Fourier spectroscopy,” J. Opt. Soc. Am. 56, 59–63 (1966). [CrossRef]
  8. J. W. Brault, “High precision Fourier transform spectroscopy: the critical role of phase correction,” Mikrochim. Acta 3, 215–227 (1987). [CrossRef]
  9. R. C. M. Learner, A. P. Thorne, I. Wynne-Jones, J. W. Brault, M. C. Abrams, “Phase correction of emission line Fourier transform spectra,” J. Opt. Soc. Am. A 12, 2165–2171 (1995). [CrossRef]
  10. D. B. Chase, “Phase correction in FT-IR,” Appl. Spectrosc. 36, 240–244 (1982). [CrossRef]
  11. R. L. Kurucz, I. Furenlid, J. Brault, L. Testerman, National Solar Observatory Atlas No. 1, (Harvard University, Cambridge, Mass., 1984).
  12. J. M. Harlander, F. L. Roesler, C. R. Englert, J. G. Cardon, R. R. Conway, C. M. Brown, J. Wimperis, “Robust monolithic ultraviolet interferometer for the SHIMMER instrument on STPSat-1,” Appl. Opt. 42, 2829–2834 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited