OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 4 — Feb. 1, 2004
  • pp: 721–728

Fizeau Interferometer for Global Astrometry in Space

Davide Loreggia, Daniele Gardiol, Mario Gai, Mario G. Lattanzi, and Deborah Busonero  »View Author Affiliations

Applied Optics, Vol. 43, Issue 4, pp. 721-728 (2004)

View Full Text Article

Acrobat PDF (278 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss the design and the performance of a Fizeau interferometer with a long focal length and a large field of view that is well suited for a global astrometry space mission. Our work focuses on the geometric optimization and minimization of aberration of such an astrometric interferometer, which is able to observe astronomical targets down to the visual magnitude (mag) mv = 20 mag, with an accuracy in the measurements of 10 micro-arcseconds at mv = 15 mag. We assume a mission profile similar to that of the Global Astrometric Interferometer for Astrophysics mission of the European Space Agency. In this framework, data acquisition is performed by an array of CCDs working in time-delay integration mode. Optical aberrations, particularly distortion and coma, play a crucial role in the efficiency of this technique. We present a design solution that meets the requirements for the best possible exploitation of the time-delay integration mode over a field of view of 0.7° × 0.7°.

© 2004 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(220.4830) Optical design and fabrication : Systems design
(350.1260) Other areas of optics : Astronomical optics
(350.6090) Other areas of optics : Space optics

Davide Loreggia, Daniele Gardiol, Mario Gai, Mario G. Lattanzi, and Deborah Busonero, "Fizeau Interferometer for Global Astrometry in Space," Appl. Opt. 43, 721-728 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. Kovalevsky, “Prospects for space stellar astrometry,” Space Sci. Rev. 39, 1–63 (1984).
  2. M. A. C. Perryman, L. Lindegren, J. Kovalevsky, E. Hoeg, U. Bastian, P. L. Bernacca, M. Crézé, F. Donati, M. Grenon, F. van Leeuwen, H. van der Marel, F. Mignard, C. A. Murray, R. S. Le Poole, H. Schrijver, C. Turon, F. Arenou, M. Froeschlé, and C. S. Petersen, “The Hipparcos Catalogue,” Astron. Astrophys. 323, L49–L52 (1997).
  3. M. A. C. Perryman, K. de Boer, F. Favata, G. Gilmore, E. Hoeg, M. G. Lattanzi, L. Lindegren, X. Luri, F. Mignard, O. Pace, and P. T. de Zeeuw, “GAIA—Composition, formation and evolution of the galaxy. Concept and technology study,” Rep. and Exec. summary ESA-SCI(2000)4 (European Space Agency, Munich, Germany, 2000).
  4. U. Bastian, S. Roser, and R. D. Scholz, “DIVA, the next global astrometry and photometry mission,” in Dynamics of Star Clusters and the Milky Way, S. Deiters, B. Fuchs, R. Spurzem, A. Just, and R. Wielen, eds., Vol. 228 of ASP Conference Series(Astronomical Society of the Pacific, San Francisco, Calif., 2001), p. 321.
  5. K. J. Johnston, R. Gaume, F. Harris, D. G. Monet, M. A. Murison, P. K. Seidelmann, S. E. Urban, M. Johnson, S. Horner, and R. Vassar, “Full-sky Astrometric Mapping Explorer (FAME),” Bull. Am. Astron. Soc. 32, 1425 (1999).
  6. M. Shao, “SIM: the space interferometry mission,” in Astronomical Interferometry, R. D. Reasenberg, ed., Proc. SPIE 3350, 536–540 (1998).
  7. S. Cesare, “Development in Enabling Technologies for the GAIA Mission,” presented at the IAF Space Exploration Symposium, Melbourne, Australia, 28 September–1 October 1998.
  8. E. Thomas, S. Robbe, T. Viard, D. Segransan, F. Vakili, and R. Krawczyk, “Optical configuration for a micro-arcsecond astrometric interferometer in space,” Astron. Astrophys. Suppl. 138, L147–L154 (1999).
  9. S. Loiseau and S. Shaklan, “Optical design, modeling and tollerancing of a Fizeau interferometer dedicated to astrometry,” Astron. Astrophys. Suppl. 117, L167–L178 (1996).
  10. L. Lindegren and M. A. C. Perryman, “GAIA: Global astrometric interferometer for astrophysics,” Astron. Astrophys. Suppl. 116, L379–L595 (1996).
  11. O. Saint-Pe, P. Mérat, F. Safa, O. Pace, and M. A. C. Prettyman, “Focal plane array design for the GAIA space mission,” in Optical Detectors for Astronomy II: State-of-the-Art at the Turn of the Millenium, P. Amico and J. W. Beletic, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1999), p. 149.
  12. L. Lindegren, “Photometric astrometry: a comparison of method for precise image location,” in Modern Astrometry, F. V. Prochazka and R. H. Tucker, eds. (Institute of Astronomy, University of Wien, Austria, 1978).
  13. M. Gai, D. Carollo, M. Delbò, M. G. Lattanzi, G. Massone, F. Bertinetto, G. Mana, and S. Cesare, “Location accuracy limitations for CCD cameras,” Astron. Astrophys. 367, 362–370 (2001).
  14. M. Gai, M. G. Lattanzi, D. Busonero, D. Bertinetto, S. Cesare, L. Corcione, D. Carollo, D. Gardiol, D. Loreggia, G. Mana, and G. Massone, “An optimised interferometric configuration for GAIA,” report SAG-MGL-016 (European Space Agency/European Space Research and Technology Center, Noordwijk, The Netherlands, 2001).
  15. D. Busonero, “Missione GAIA: Ottimizzazione dello strumento per misure di astrometria globale ad alta precisione,” Ph.D. dissertation (Università degli Studi di Pisa, Pisa, Italy, 2001).
  16. M. Gai, S. Casertano, D. Carollo, and M. G. Lattanzi, “Location estimators for interferometric fringes,” Publ. Astron. Soc. Pac. 110, 848–862 (1998).
  17. J. Binney and M. Merrifield, Galactic Astronomy (Princeton U. Press, Princeton, N.J., 1998).
  18. Optical Research Associates, “Code V User Manual,” (Optical Research Associates, Pasadena, Calif., 1995).
  19. D. C. O’Shea, Elements of Modern Optical Design (Wiley, New York, 1985).
  20. W. Smith, Modern Optical Engineering, R. E. Fischer and W. J. Smith, eds. (McGraw-Hill, New York, 1990).
  21. D. Korsch, Reflective Optics (Academic, San Diego, Calif., 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited