OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 4 — Feb. 1, 2004
  • pp: 744–749

Simple High-Resolution Wavelength Monitor Based on a Fiber Bragg Grating

José Mora, José Luis Cruz, Miguel V. Andrés, and Ricardo Duchowicz  »View Author Affiliations


Applied Optics, Vol. 43, Issue 4, pp. 744-749 (2004)
http://dx.doi.org/10.1364/AO.43.000744


View Full Text Article

Acrobat PDF (283 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact and low-cost device for monitoring the peak wavelength of single-peak spectral distributions is presented. The system is based on the transmission properties of a fiber Bragg grating when its period is modulated. Different types of optical signal, such as the emission of distributed-feedback lasers and the reflection of a broadband optical source produced by fiber gratings used in sensor systems, can be measured with this device. We demonstrate that a high wavelength resolution of ~1 pm can be achieved and that our proposal can be used for real-time monitoring.

© 2004 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology

Citation
José Mora, José Luis Cruz, Miguel V. Andrés, and Ricardo Duchowicz, "Simple High-Resolution Wavelength Monitor Based on a Fiber Bragg Grating," Appl. Opt. 43, 744-749 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-4-744


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
  2. C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997).
  3. J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, and J.-M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating divided coil heaters,” IEEE Photon. Technol. Lett. 15, 407–409 (2003).
  4. Z. Pan, Y. W. Song, C. Yu, Y. Wang, Q. Yu, J. Popelek, H. Li, Y. Li, and A. E. Willner, “Tunable chromatic dispersion compensation in 40-Gb/s systems using nonlinearly chirped fiber Bragg gratings,” J. Lightwave Technol. 20, 2239–2246 (2002).
  5. A. Díez, M. Delgado-Pinar, J. Mora, J. L. Cruz, and M. V. Andrés, “Dynamic fiber-optic add–drop multiplexer using Bragg gratings and acousto-optic-induced coupling,” IEEE Photon. Technol. Lett. 15, 84–86 (2003).
  6. R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, R. Lee, S. Karr, T. Coroy, and S. Huang, “Bragg grating laser sensing systems for smart structures,” in Proceedings of IEEE Conference on Laser and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 137–138.
  7. A. D. Kersey, “A review of recent developments in fiber optic sensor technology,” Opt. Fiber Technol. 2, 291–317 (1996).
  8. A. B. Lobo Ribeiro, L. A. Ferreira, J. L. Santos, and D. A. Jackson, “Analysis of the reflective-matched fiber Bragg grating sensing interrogation scheme,” Appl. Opt. 36, 934–939 (1997).
  9. L. A. Ferreira, J. L. Santos, and F. Farahi, “Pseudoheterodyne demodulation technique for fiber Bragg gratings sensors using two matched gratings,” IEEE Photon. Technol. Lett. 9, 487–489 (1997).
  10. J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “PA novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
  11. A. Arie, B. Lissak, and M. Tur, “Static fiber-Bragg grating strain sensing using frequency-locked lasers,” J. Lightwave Technol. 17, 1849–1855 (1999).
  12. L. A. Ferreira, E. V. Diatzikis, J. L. Santos, and F. Farahi, “Frequency-modulated multimode laser diode for fiber Bragg grating sensors,” J. Lightwave Technol. 16, 1620–1630 (1998).
  13. C. J. Misas, F. M. Araújo, L. A. Ferreira, J. L. Santos, and J. M. López-Higuera, “Fiber Bragg sensors interrogation based on carrier generation by modulating the coupling length of a wavelength-division multiplexer,” IEEE J. Sel. Top. Quantum Electron. 6, 750–755 (2000).
  14. S. Abad, F. M. Araújo, L. A. Ferreira, J. L. Santos, and M. López-Amo, “Interrogation of wavelength multiplexed fiber Bragg gratings using spectral filtering and amplitude-to-phase optical conversion,” J. Lightwave Technol. 21, 127–131 (2003).
  15. J. Mora, R. Duchowicz, J. L. Cruz, and M. V. Andrés, “Simple fiber optic device to interrogate fiber optic Bragg gratings used as sensors,” in 4th Iberoamerican Meeting on Optics, V. L. Brudny, S. A. Ledesma, and M. C. Marconi, eds., Proc. SPIE 4419, 346–349 (2001).
  16. S. G. Allison, R. L. Fox, M. E. Frogatt, and B. A. Childers, “Novel piezoelectric actuators for tuning an optical fiber Bragg grating,” Opt. Eng. 41, 2448–2455 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited