OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 4 — Feb. 1, 2004
  • pp: 776–782

Micromachined arrays of cantilevered glass probes

Pradeep Srinivasan, Fred R. Beyette, Jr., and Ian Papautsky  »View Author Affiliations

Applied Optics, Vol. 43, Issue 4, pp. 776-782 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (650 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the fabrication and characterization of cantilevered glass probe arrays. Individual probes have tapered shafts that are 175 μm square at the base and 200 nm square at the pyramidal tip. Each array contains as many as eight probes 10–20 mm long at 450-μm center-to-center spacing, fabricated from a single glass wafer by a combination of dicing and chemical etching. Optical signal losses of individual probes were measured to be of the order of 1 dB/cm. High-density data storage and page-oriented retrieval are the potential applications of the arrays.

© 2004 Optical Society of America

OCIS Codes
(120.4610) Instrumentation, measurement, and metrology : Optical fabrication
(220.4000) Optical design and fabrication : Microstructure fabrication

Original Manuscript: May 1, 2003
Revised Manuscript: August 19, 2003
Published: February 1, 2004

Pradeep Srinivasan, Fred R. Beyette, and Ian Papautsky, "Micromachined arrays of cantilevered glass probes," Appl. Opt. 43, 776-782 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Fujihira, H. Monobe, H. Muramatsu, T. Ataka, “Measurements of lateral distributions of fluorescence intensities and fluorescence spectra of microareas by a combined SNOM and AFM,” Ultramicroscopy 57, 118–123 (1995). [CrossRef]
  2. D. Di Carlo, W. Chang, L. P. Lee, “Simulations of near-field excitation and trapping for integrated near-field optical microfluidic devices,” in First Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2001), pp. 411–414.
  3. J. Cha, J. H. Park, M. R. Kim, W. Jhe, “Near field optical data storage using a nanometric aperture array,” J. Korean Phys. Soc. 37, 735–738 (2000).
  4. Y. T. Chiu, “A second wind for DVD red laser technology?” IEEE Spectrum 39, 18 (2002). [CrossRef]
  5. J. Kim, D. E. Pride, J. T. Boyd, H. E. Jackson, “Spectrally resolved near field investigation of proton implanted vertical cavity surface emitting lasers,” Appl. Phys. Lett. 72, 3112–3114 (1998). [CrossRef]
  6. C. D. Poweleit, D. H. Naghski, S. M. Lindsay, J. T. Boyd, H. E. Jackson, “Near field scanning optical measurements of optical intensity distributions in semiconductor channel waveguides,” Appl. Phys. Lett. 69, 3471–3473 (1996). [CrossRef]
  7. S. Jiand, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, A. Ikai, “Nanometer scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, 2282–2287 (1992). [CrossRef]
  8. S. Sun, K. S. L. Chong, G. J. Legett, “Scanning near-field optical lithography of self-assembled monolayers,” J. Am. Chem. Soc. 124, 2414–2415 (2002). [CrossRef] [PubMed]
  9. M. Paesler, P. Moyer, Near-Field Optics: Theory, Instrumentation and Applications (Wiley, New York, 1996).
  10. B. Hecht, B. Sick, P. U. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000). [CrossRef]
  11. J. Tang, B. Seshadri, K. N. Naughton, B. K. Lee, R. C. J. Chi, A. J. Steckl, F. R. Beyette, “CMOS-based photoreceiver arrays for page-oriented optical storage access,” IEEE Photon. Technol. Lett. 12, 1234–1236 (2000). [CrossRef]
  12. M. Ohtsu, “Progress of high resolution photon scanning tunneling microscopy due to a nanometric probe,” J. Lightwave Technol. 13, 1200–1221 (1995). [CrossRef]
  13. T. Matsumoto, M. Ohtsu, “Fabrication of a fiber probe with a nanometric protrusion for near-field optical microscopy by a novel technique of three dimensional nanophotolithography,” J. Lightwave Technol. 14, 2224–2230 (1996). [CrossRef]
  14. Y. D. Suh, R. Zenobi, “Improved probes for scanning near-field optical microscopy,” Adv. Mater. 12, 1139–1142 (2000). [CrossRef]
  15. D. V. Palanker, G. M. H. Knippels, T. I. Smith, H. A. Schwettman, “IR microscopy with a transient photo-induced near-field probe (tipless near-field microscopy),” Opt. Commun. 148, 215–220 (1998). [CrossRef]
  16. H. Furukawa, S. Katawa, “Local field enhancement with an apertureless near-field microscope,” Opt. Commun. 148, 221–224 (1998). [CrossRef]
  17. W. Noel, M. Abraham, K. Mayr, A. Ruf, J. Barenz, O. Hollrichner, O. Marti, “Micromachined aperture probe tip for multifunctional scanning probe microscopy,” Appl. Phys. Lett. 70, 1236–1238 (1997). [CrossRef]
  18. M. Kourogi, T. Yatsui, S. Ishimura, M. B. Lee, N. Atoda, K. Tsutsui, M. Ohtsu, “Planar apertured probe array for optical near-field memory,” in Far- and Near-Field Optics: Physics and Information Processing Conference, S. Jutamulia, T. Asakura, eds., Proc. SPIE3467, 258–267 (1998). [CrossRef]
  19. G. A. Valaskovic, M. Holton, G. H. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,” Appl. Opt. 35, 1215–1227 (1995). [CrossRef]
  20. D. R. Turner, “Etch procedures for optical fibers,” U.S. patent4,469554 (4September1984).
  21. T. Yatsui, M. Kourogi, M. Ohtsu, “Increasing throughput of a near-field optical fiber probe over 1000-times by the use of a triple tapered structure,” Appl. Phys. Lett. 73, 2090–2092 (1998). [CrossRef]
  22. R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, U. P. Wild, “High quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999). [CrossRef]
  23. L. L. Lo, “The meniscus on a needle—a lesson in matching,” J. Fluid. Mech. 132, 65–78 (1983). [CrossRef]
  24. P. K. Wong, T. Wang, C. Ho, “Optical fiber tip fabricated by surface tension controlled etching,” in Proceedings of Solid State Sensor Actuator and Microsystems Workshop (Transducers Research Foundation, Cleveland, Ohio, 2002), pp. 94–97.
  25. A. Marcia, S. Raghavan, P. Deymier, D. J. Monk, R. Roop, “Water dispersible silanes for wettability modification of polysilicon,” J. Electrochem. Soc. 149, H6–H11 (2002). [CrossRef]
  26. J. Le, C. J. Kim, “Surface tension driven microactuation based on continuous electrowetting,” J. Microelectromech. Syst. 9, 171–180 (2000). [CrossRef]
  27. H. K. Jang, Y. D. Chung, S. W. Whangbo, T. G. Kim, C. N. Whang, S. J. Lee, S. Lee, “Effects of chemical etching with nitric acid on glass surfaces,” J. Vac. Sci. Technol. A 19, 267–274 (2001). [CrossRef]
  28. V. Stenger, F. R. Beyette, “Design and analysis of an optical waveguide tap for silicon CMOS circuits,” J. Lightwave Technol. 20, 277–284 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited