OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 4 — Feb. 1, 2004
  • pp: 783–787

High-performance fluidic adaptive lenses

De-Ying Zhang, Nicole Justis, Victor Lien, Yevgeny Berdichevsky, and Yu-Hwa Lo  »View Author Affiliations

Applied Optics, Vol. 43, Issue 4, pp. 783-787 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (381 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-performance fluidic lenses with an adjustable focal length spanning a very wide range (30 mm to infinite) are demonstrated. We show that the focal length, F-number, and numerical aperture can be dynamically controlled by changing the shape of the fluidic adaptive lens without moving the lens position mechanically. The shortest focal length demonstrated is less than 30 mm for a 20-mm lens aperture. The fluidic adaptive lens has a nearly perfect spherical profile and shows a resolution better than 40 line pairs/mm in a plano-convex structure and 57 line pairs/mm in a biconvex structure.

© 2004 Optical Society of America

OCIS Codes
(080.3630) Geometric optics : Lenses
(160.5470) Materials : Polymers
(220.3630) Optical design and fabrication : Lenses

Original Manuscript: August 11, 2003
Revised Manuscript: October 24, 2003
Published: February 1, 2004

De-Ying Zhang, Nicole Justis, Victor Lien, Yevgeny Berdichevsky, and Yu-Hwa Lo, "High-performance fluidic adaptive lenses," Appl. Opt. 43, 783-787 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Javidi, ed. Smart Imaging Systems, Vol. 91 of the SPIE Press Monographs (SPIE, Bellingham, Wash., 2001).
  2. R. K. Tyson, ed. Adaptive Optics Engineering Handbook (Marcel Dekker, New York, 2000).
  3. A. F. Naumov, G. D. Love, “Control optimization of spherical modal liquid crystal lenses,” Opt. Exp. 4, 344–352 (1999), http://www.opticsexpress.org . [CrossRef]
  4. T. Shirai, T. H. Barnes, T. G. Haskell, “Real-time restoration of a blurred image with a liquid-crystal adaptive-optics system based on all-optical feedback interferometry,” Opt. Commun. 188, 275–282 (2001). [CrossRef]
  5. G. Vdovin, “Quick focusing of imaging optics using micromachined adaptive mirrors,” Opt. Commun. 140, 187–190 (1997). [CrossRef]
  6. B. M. Wright, “Improvements in or relating to variable focus lenses,” English patent1,209,234 (11March, 1968).
  7. G. C. Knollman, J. L. S. Bellin, J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49, 253–261 (1970). [CrossRef]
  8. N. Sugiura, S. Morita, “Variable-focus liquid-filled optical lens,” Appl. Opt. 32, 4181–4186 (1993). [CrossRef] [PubMed]
  9. A. H. Rawicz, I. Mikhailenko, “Modeling a variable-focus liquid-filled optical lens,” Appl. Opt. 35, 1587–1589 (1996). [CrossRef] [PubMed]
  10. D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003). [CrossRef]
  11. D. Y. Zhang, Y. H. Lo, “Focal length tunable fluidic adaptive lens,” presented at the Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Baltimore, Md., 1–6 June 2003.
  12. Y. Xia, G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. Engl. 37, 550–575 (1998). [CrossRef]
  13. B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elsatomer,” J. Microelectromech. Syst. 9, 76–81 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited