OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 4 — Feb. 1, 2004
  • pp: 877–882

Optical characteristics of a refractive optical attenuator with respect to the wedge angles of a silicon optical leaker

Jong-Hyun Lee, Sung-Sik Yun, Young Yun Kim, and Kyoung-Woo Jo  »View Author Affiliations


Applied Optics, Vol. 43, Issue 4, pp. 877-882 (2004)
http://dx.doi.org/10.1364/AO.43.000877


View Full Text Article

Enhanced HTML    Acrobat PDF (548 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We design, fabricate, and characterize the micromachined refractive variable optical attenuator (VOA) with a wedge-shaped silicon optical leaker (SOL). The vertical structures of the VOA device can be simply fabricated by deep reactive ion etching with no sidewall metallization, and the 8° angled fibers are employed for a high return loss even in air-ambient conditions. The SOL successively transmits and refracts part of the incident light far outside the acceptance angle of the output fiber, showing an effective optical attenuation. The fabricated VOA gives high optical performances, such as a response time of 6 ms, a return loss of 39 dB, an insertion loss of 0.6 dB, an attenuation range of 43 dB, and a polarization-dependent loss (PDL) of a 10% attenuation level, including a wavelength-dependent loss. The optical characteristics of the VOA are also theoretically investigated with respect to the wedge angles of the SOL. The experimental characteristics are in good agreement with the theoretical values calculated, considering light scattered from the endface of an optical fiber and sidewall of the SOL. The PDL estimation was confirmed especially to sufficiently explain the fundamental characteristic of the PDL for the refractive VOA.

© 2004 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.4000) Optical devices : Microstructure fabrication

History
Original Manuscript: October 14, 2002
Revised Manuscript: September 16, 2003
Published: February 1, 2004

Citation
Jong-Hyun Lee, Sung-Sik Yun, Young Yun Kim, and Kyoung-Woo Jo, "Optical characteristics of a refractive optical attenuator with respect to the wedge angles of a silicon optical leaker," Appl. Opt. 43, 877-882 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-4-877


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. M. Andersen, S. Fairchild, N. Thorsten, “MEMS variable optical attenuator for optical amplifiers,” in Conference on Optical Fiber Communication, Vol. 2 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000) pp. 260–262.
  2. J. E. Ford, J. A. Walker, D. S. Greywall, K. W. Goossen, “Micromechanical fiber-optic attenuator with 3-μs response,” J. Lightwave Technol. 60, 1663–1670 (1998). [CrossRef]
  3. B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Phonton. Technol. Lett. 10, 1262–1264 (1998). [CrossRef]
  4. R. Wood, V. Dhuler, E. Hill, “A MEMS variable optical attenuator,” in Conference on IEEE/LEOS Optical MEMS (IEEE, Hawaii, 2000), pp. 121–122.
  5. A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge,” J. Micromech. Microeng. 13, 400–411 (2003). [CrossRef]
  6. C. Marxer, P. Griss, N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett. 11, 233–235 (1999). [CrossRef]
  7. S. S. Yun, Y. Y. Kim, H. N. Kwon, J. H. Lee, H. K. Lee, S. C. Jung, “Optical characteristics of a micromachined VOA using successive partial transmission in a silicon optical leaker,” in Conference on IEEE/LEOS Optical MEMS (IEEE, Lugano, Switzerland, 2002), pp. 51–52.
  8. W. C. Tang, Tu-Cuong, H. Nguyen, R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sens. Actuators. 20, 25–32 (1989). [CrossRef]
  9. G. R. Fowles, Introduction to Modern Optics (Dover, New York, 1989), Chap. 2.
  10. W. H. Juan, S. W. Pang, “Controlling sidewall smoothness for micromachined Si mirrors and lenses,” J. Vac. Sci. Technol. B 14, 4080–4084 (1996). [CrossRef]
  11. J. Bhardwaj, H. Ashraf, “Advanced silicon etching using high density plasma,” in Micromachining and Microfabrication Process Technology, K. W. Markus, ed., Proc. SPIE2639, 224–233 (1995). [CrossRef]
  12. J. H. Lee, W. I. Jang, C. S. Lee, Y. I. Lee, C. A. Choi, J. T. Baek, H. J. Yoo, “Characterization of anhydrous HF gas-phase etching with CH3OH for sacrificial oxide removal,” Sens. Actuators A 64, 27–32 (1998). [CrossRef]
  13. J.-H. Lee, Y. Y. Kim, S. S. Yun, H. Kwon, Y. S. Hong, J. H. Lee, S. C. Jung, “Design and characteristics of a micromachined variable optical attenuator with a silicon optical wedge,” Opt. Commun. 221, 323–330 (2003). [CrossRef]
  14. S. Martinez, B. Courtois, “Insertion losses in micromachined free-space optical cross-connects due to fiber misalignments,” in Design, Test, Integration, and Packaging of MEMS/MOEMS 2001, B. Courtois, J. M. Karam, S. P. Levifan, K. W. Markus, J. W. Walker, eds., Proc. SPIE4408, 289–300 (2001). [CrossRef]
  15. K. Y. Lee, W. J. Parzygnat, “Low-reflection, single-mode multifiber array connector (MAC),” in Proceedings of Electronic Components Conference (Bellcore, Piscataway, N. J., 1989), pp. 362–364. [CrossRef]
  16. S. Nemoto, T. Makimoto, “Analysis of splices loss in single-mode fibers using a Gaussian field approximation,” Opt. Quantum Electron. 11, 447–457 (1979). [CrossRef]
  17. D. K. Mynbaev, L. L. Schneider, Fiber-Optic Communications Technology (Prentice-Hall, Englewood Cliffs, N.J., (2001), Chap. 6, p. 194.
  18. “Generic requirements for fiber optic attenuators,” GR-910-CORE, Bellcore, issue 2 (Bellcore, Piscataway, N.J., Dec.1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited