OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 4 — Feb. 1, 2004
  • pp: 914–927

Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight

Jianping Mao and S. Randolph Kawa  »View Author Affiliations

Applied Optics, Vol. 43, Issue 4, pp. 914-927 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1052 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The feasibility of making space-based carbon dioxide (CO2) measurements for global and regional carbon-cycle studies is explored. With the proposed detection method, we use absorption of reflected sunlight near 1.58 μm. The results indicate that the small (∼1%) changes in CO2 near the Earth’s surface are detectable provided that an adequate sensor signal-to-noise ratio and spectral resolution are achievable. Modification of the sunlight path by scattering of aerosols and cirrus clouds could, however, lead to systematic errors in the CO2 column retrieval; therefore ancillary aerosol and cloud data are important to reduce errors. Precise measurement of surface pressure and good knowledge of the atmospheric temperature profile are also required.

© 2004 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.1310) Remote sensing and sensors : Atmospheric scattering
(300.1030) Spectroscopy : Absorption
(300.6320) Spectroscopy : Spectroscopy, high-resolution

Original Manuscript: May 28, 2003
Revised Manuscript: October 14, 2003
Published: February 1, 2004

Jianping Mao and S. Randolph Kawa, "Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight," Appl. Opt. 43, 914-927 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Intergovernmental Panel on Climate Change , Climate Change 2001: Synthesis Report (Cambridge U. Press, New York, 2001).
  2. P. P. Tans, I. Y. Fung, T. Takahashi, “Observational constraints on the global atmospheric CO2 budget,” Science 247, 1431–1438 (1990). [CrossRef] [PubMed]
  3. S. Fan, M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento, T. Takahashi, P. Tans, “A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models,” Science 282, 442–446 (1998). [CrossRef] [PubMed]
  4. D. Schimel, J. I. House, K. A. Hibbard, P. Bousquet, P. Cias, P. Peylin, B. H. Braswell, M. J. Apps, D. Baker, A. Bondeau, J. Canadell, G. Churkina, W. Cramer, A. S. Denning, C. B. Field, P. Friedlingstein, C. Goodale, M. Heimann, R. A. Houghton, J. M. Melillo, B. Moore, D. Murdiyarso, I. Noble, S. W. Pacala, I. C. Prentice, M. R. Paupach, P. J. Rayner, R. J. Scholes, W. L. Steffen, C. Wirth, “Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States,” Science 287, 2004–2006 (2000). [CrossRef] [PubMed]
  5. R. B. Myneni, J. Dong, C. J. Tucker, R. K. Kaufmann, P. E. Kauppi, J. Liski, L. Zhou, V. Alexeyev, M. K. Hughes, “A large carbon sink in the woody biomass of Northern forests,” Proc. Natl. Acad. Sci. USA 98, 14784–14789 (2001). [CrossRef] [PubMed]
  6. T. J. Conway, P. P. Tans, L. S. Waterman, K. W. Thoning, “Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network,” J. Geophys. Res. 99, 22831–22855 (1994). [CrossRef]
  7. P. J. Rayner, D. M. O’Brien, “The utility of remotely sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175–178 (2001). [CrossRef]
  8. B. C. Pak, M. J. Prather, “CO2 source inversions using satellite observations of the upper troposphere,” Geophys. Res. Lett. 28, 4571–4574 (2001). [CrossRef]
  9. K. R. Gurney, R. M. Law, A. S. Denning, P. J. Rayner, D. Baker, P. Bousquet, L. Bruhwiler, Y.-H. Chen, P. Ciais, S. Fan, I. Y. Fung, M. Gloor, M. Heimann, K. Higuchi, J. John, T. Maki, S. Maksyutov, K. Masarie, P. Peylin, M. Prather, B. C. Pak, J. Randerson, J. Sarmiento, S. Taguchi, T. Takahashi, C.-W. Yuen, “Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models,” Nature (London) 415, 626–630 (2002). [CrossRef]
  10. T. Aoki, M. Fukabori, T. Aoki, “Trace gas remote sounding from near IR sun glint observation with tunable etalons,” in High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies, ASI Ser. 19, A. Chedin, M. T. Chahine, N. A. Scott, eds. (NATO Advanced Study Institute, Berlin, 1993), pp. 309–322. [CrossRef]
  11. J. H. Park, “Atmospheric CO2 monitoring from space,” Appl. Opt. 36, 2701–2712 (1997). [CrossRef] [PubMed]
  12. B. T. Tolton, D. Plouffe, “Sensitivity of radiometric measurements of the atmospheric CO2 column from space,” Appl. Opt. 40, 1305–1313 (2001). [CrossRef]
  13. D. M. O’Brien, P. J. Rayner, “Global observations of carbon budget 2, CO2 concentrations from differential absorption of reflected sunlight in the 1.61 m band of CO2,” J. Geophys. Res. 107, 10.1029/2001JD000617 (2002).
  14. Z. Kuang, J. Margolis, G. Toon, D. Crisp, Y. Yung, “Spaceborne measurements of atmospheric CO2 by high-resolution NIR spectrometry of reflected sunlight: an introductory study,” Geophys. Res. Lett. 29, 10.1029/2001GL014298 (2002).
  15. E. Defour, F. M. Breon, “Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method: error analysis,” Appl. Opt. 42, 3595–3609 (2003). [CrossRef]
  16. Z. Yang, G. C. Toon, J. S. Margolis, P. O. Wennberg, “Atmospheric CO2 retrieved from ground-based near IR solar spectra,” Geophys. Res. Lett. 29, 10.1029/2001GL014537 (2002).
  17. National Oceanic and Atmospheric Administration, Climate Monitoring and Diagnostics Laboratory, Carbon Cycle Group (1999), http://www.cmdl.noaa.gov/ccgg/ .
  18. T. Nakajawa, K. Miyashita, S. Aoki, M. Tanaka, “Temporal and spatial variations of upper tropospheric and lower stratospheric carbon dioxide,” Tellus Ser. B 43, 106–117 (1991). [CrossRef]
  19. U. Schmidt, A. Khedim, “In situ measurements of carbon dioxide in the winter arctic vortex and at midlatitudes: an indicator of the ‘age’ of stratospheric air,” Geophys. Res. Lett. 18, 763–766 (1991). [CrossRef]
  20. A. E. Andrews, K. A. Boering, S. C. Wofsy, B. C. Daube, D. B. Jones, S. Alex, M. Loewenstein, J. R. Podolske, S. E. Strahan, “Empirical age spectra for the midlatitude lower stratosphere from in situ observations of CO2: quantitative evidence for a subtropical ‘barrier’ to horizontal transport,” J. Geophys. Res. 106, 10257–10274 (2001). [CrossRef]
  21. S. R. Kawa, D. J. Erickson, S. Pawson, Z. Zhu, “Global CO2 transport simulations using meteorological data from the NASA data assimilation system,” J. Geophys. Res., submitted for publication.
  22. W. L. Smith, “Iterative solution of the radiative transfer equation for temperature and absorbing gas profile of an atmosphere,” Appl. Opt. 9, 1993–1999 (1970). [CrossRef] [PubMed]
  23. M. T. Chahine, “Inverse problems in radiative transfer: determination of atmospheric parameters,” J. Atmos. Sci. 27, 960–967 (1970). [CrossRef]
  24. C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Sci. 14, 609–624 (1976). [CrossRef]
  25. L. M. McMillin, H. E. Fleming, “Atmospheric transmittance of an absorbing gas: a computationally fast and accurate transmittance model for absorbing gases with constant mixing ratios in inhomogeneous atmosphere,” Appl. Opt. 15, 358–363 (1976). [CrossRef] [PubMed]
  26. H. E. Fleming, L. M. McMillin, “Atmospheric transmittance of an absorbing gas. 2. A computationally fast and accurate transmittance model for slant paths at different zenith angles,” Appl. Opt. 16, 1366–1370 (1977). [CrossRef] [PubMed]
  27. S. A. Clough, M. J. Iacono, J.-L. Moncet, “Line-by-line calculation of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785 (1992). [CrossRef]
  28. S. A. Clough, M. J. Iacono, “Line-by-line calculations of atmospheric fluxes and cooling rates. 2. Applications to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995). [CrossRef]
  29. S. A. Clough, F. X. Kneizys, L. S. Rothman, W. O. Gallery, “Atmospheric spectral transmittance and radiance: FASCOD1B,” in Atmospheric Transmission, R. W. Fenn, ed., Proc. SPIE277, 152 (1981). [CrossRef]
  30. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  31. B. H. Armstrong, “Spectrum line profiles: the Voigt function,” J. Quant. Spectrosc. Radiat. Transfer 7, 61–88 (1967). [CrossRef]
  32. R. L. Kurucz, “Synthetic infrared spectra,” in Infrared Solar Physics, Proceedings of the 154th Symposium of the International Astronomical Union, D. M. Rabin, J. T. Jefferies, C. Lindsey, eds. (Kluwer Academic, Boston, Mass., 1994). [CrossRef]
  33. K. Stamnes, S.-C. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988). [CrossRef] [PubMed]
  34. W. Wiscombe, “The delta-M method: rapid yet accurate radiative flux calculations,” J. Atmos. Sci. 34, 1408–1422 (1977). [CrossRef]
  35. T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988). [CrossRef]
  36. P. F. Ambrico, A. Amodeo, P. D. Girolamo, N. Spinelli, “Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region,” Appl. Opt. 39, 6847–6865 (2000). [CrossRef]
  37. F. Kneizys, E. Shuttle, W. Gallery, J. Chetwynd, L. Abreu, J. Selby, S. Clough, R. Fenn, “Atmospheric transmittance/radiance computer code LOWTRAN 6,” AFGL-83-0187 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983).
  38. D. P. Wylie, W. P. Menzel, H. M. Woolf, K. I. Strabala, “Four years of global cirrus cloud statistics using HIRS,” J. Clim. 12, 1972–1986 (1994). [CrossRef]
  39. Y. Takano, K.-N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989). [CrossRef]
  40. Z. Sun, K. P. Shine, “Studies of the radiative properties of ice and mixed-phase clouds,” Q. J. Roy. Meteor. Soc. 120, 111–137 (1994). [CrossRef]
  41. S. Asano, “Light scattering properties of spheroidal particles,” Appl. Opt. 18, 712–723 (1979). [CrossRef] [PubMed]
  42. L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  43. B. Pinty, M. M. Verstraete, “Extracting information on surface properties from bidirectional reflectance measurements,” J. Geophys. Res. 96D, 2865–2874 (1991). [CrossRef]
  44. K. Ya Kondratyev, Radiation in the Atmosphere (Academic, New York, 1969).
  45. For example, see the Orbiting Carbon Observatory at http://oco.jpl.nasa.gov .
  46. I. Heaton, “Temperature scaling of absorption coefficients,” J. Quant. Spectrosc. Radiat. Transfer 16, 801–804 (1976). [CrossRef]
  47. J. Susskind, C. Barnet, J. Blaisdell, “Determination of atmospheric and surface parameters from simulated Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU)/Humidity Sounder Brazil (HSB) sounding data: retrieval and cloud clearing methodology,” Adv. Space Res. 21, 369–384 (1998). [CrossRef]
  48. R. M. Mitchell, D. M. O’Brien, “Error estimates for passive satellite measurement of surface pressure using absorption in the A band of oxygen,” J. Atmos. Sci. 44, 1981–1990 (1987). [CrossRef]
  49. D. M. O’Brien, R. M. Mitchell, S. A. English, G. A. Da Costa, “Airborne measurements of air mass from O2 A-band absorption spectra,” J. Atmos. Oceanic Technol. 15, 1272–1286 (1998). [CrossRef]
  50. G. L. Stephens, A. Heidinger, “Molecular line absorption in a scattering atmosphere. Part I: Theory,” J. Atmos. Sci. 57, 1599–1614 (2000). [CrossRef]
  51. A. Heidinger, G. L. Stephens, “Molecular line absorption in a scattering atmosphere. Part II: Application to remote sensing in the O2 A band,” J. Atmos. Sci. 57, 1615–1634 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited