OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 4 — Feb. 1, 2004
  • pp: 961–976

Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments

Volker Matthais, Volker Freudenthaler, Aldo Amodeo, Ioan Balin, Dimitris Balis, Jens Bösenberg, Anatoly Chaikovsky, Georgius Chourdakis, Adolfo Comeron, Arnaud Delaval, Ferdinando De Tomasi, Ronald Eixmann, Arne Hågård, Leonce Komguem, Stephan Kreipl, Renaud Matthey, Vincenzo Rizi, José António Rodrigues, Ulla Wandinger, and Xuan Wang  »View Author Affiliations


Applied Optics, Vol. 43, Issue 4, pp. 961-976 (2004)
http://dx.doi.org/10.1364/AO.43.000961


View Full Text Article

Enhanced HTML    Acrobat PDF (262 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the framework of the European Aerosol Research Lidar Network to Establish an Aerosol Climatology (EARLINET), 19 aerosol lidar systems from 11 European countries were compared. Aerosol extinction or backscatter coefficient profiles were measured by at least two systems for each comparison. Aerosol extinction coefficients were derived from Raman lidar measurements in the UV (351 or 355 nm), and aerosol backscatter profiles were calculated from pure elastic backscatter measurements at 351 or 355, 532, or 1064 nm. The results were compared for height ranges with high and low aerosol content. Some systems were additionally compared with sunphotometers and starphotometers. Predefined maximum deviations were used for quality control of the results. Lidar systems with results outside those limits could not meet the quality assurance criterion. The algorithms for deriving aerosol backscatter profiles from elastic lidar measurements were tested separately, and the results are described in Part 2 of this series of papers [Appl. Opt. 43, 977–989 (2004)]. In the end, all systems were quality assured, although some had to be modified to improve their performance. Typical deviations between aerosol backscatter profiles were 10% in the planetary boundary layer and 0.1 × 10-6 m-1 sr-1 in the free troposphere.

© 2004 Optical Society of America

OCIS Codes
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3640) Remote sensing and sensors : Lidar
(290.1350) Scattering : Backscattering
(290.2200) Scattering : Extinction
(290.5860) Scattering : Scattering, Raman

History
Original Manuscript: March 19, 2003
Revised Manuscript: October 1, 2003
Published: February 1, 2004

Citation
Volker Matthais, Volker Freudenthaler, Aldo Amodeo, Ioan Balin, Dimitris Balis, Jens Bösenberg, Anatoly Chaikovsky, Georgius Chourdakis, Adolfo Comeron, Arnaud Delaval, Ferdinando De Tomasi, Ronald Eixmann, Arne Hågård, Leonce Komguem, Stephan Kreipl, Renaud Matthey, Vincenzo Rizi, José António Rodrigues, Ulla Wandinger, and Xuan Wang, "Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments," Appl. Opt. 43, 961-976 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-4-961


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hagard, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Laser Remote Sensing of the Atmosphere, A. Dabas, C. Loth, J. Pelon, eds., selected papers of the 20th International Laser Radar Conference (Edition Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.
  2. G. C. Grabbe, J. Bösenberg, H. Dier, U. Görsdorf, V. Matthias, G. Peters, T. Schaberl, C. Senff, “Intercomparison of ozone measurements between lidar and ECC-sondes,” Contr. Atmos. Phys. 69, 189–203 (1996).
  3. A. Apituley, “Comparison of the RIVM tropospheric ozone lidar to in situ measuring instruments using data acquired during TROLIX,” Rep. 722701001 (Rijksinstituut voor Volksgezondheit en Millieu, Bilthoven, The Netherlands, 1995).
  4. J. Bösenberg, G. Ancellet, A. Apituley, H. Bergwerff, G. von Cossart, H. Edner, J. Fiedler, B. Galle, C. N. de Jonge, J. Melquist, V. Mitev, T. Schaberl, G. Sonnemann, J. Spaakman, D. J. P. Swart, E. Wallinder, “Tropospheric Ozone Lidar Intercomparison Experiment, TROLIX’91, field phase report.” Rep. 102 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1993).
  5. I. S. McDermid, S. M. Godin, D. T. Walsh, “Lidar measurements of stratospheric ozone and intercomparisons and validation,” Appl. Opt. 29, 4914–4923 (1990). [CrossRef] [PubMed]
  6. I. S. McDermid, S. M. Godin, R. A. Barnes, C. L. Parsons, A. Torres, M. P. McCormick, W. P. Chu, P. Wang, J. Butler, P. Newman, J. Burris, R. Ferrare, D. Whitemann, T. J. McGee, “Comparison of ozone profiles from ground-based lidar, electrochemical concentration cell balloon sonde, ROCOZ, a rocket ozonesonde, and stratospheric aerosol and gas experiment satellite measurements,” J. Geophys. Res. 95, 10037–10042 (1990). [CrossRef]
  7. R. A. Ferrare, D. N. Whiteman, S. H. Melfi, K. D. Evans, F. J. Schmidlin, D. O’C. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Ocean. Technol. 12, 1177–1195 (1995). [CrossRef]
  8. V. Sherlock, A. Garnier, A. Hauchecorne, P. Keckhut, “Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapor,” Appl. Opt. 38, 5838–5850 (1999). [CrossRef]
  9. H. Steinhagen, S. Bakan, J. Bösenberg, H. Dier, D. Engelbart, J. Fischer, G. Gendt, U. Görsdorf, J. Güldner, F. Jansen, V. Lehmann, U. Leiterer, J. Neisser, V. Wulfmeyer, “Field campaign LINEX 96/1—possibilities of water vapor observation in the free atmosphere,” Meteorol. Z. 6, 377–391 (1998).
  10. I. S. McDermid, S. M. Godin, L. O. Lindqvist, T. D. Walsh, J. Burris, J. Butler, R. Ferrare, D. Whitemann, T. J. McGee, “Measurement intercomparison of the JPL and GSFC stratospheric ozone lidar systems,” Appl. Opt. 29, 4671–4676 (1990). [CrossRef] [PubMed]
  11. H. Linné, D. D. Turner, J. E. M. Goldsmith, T. P. Tooman, J. Bösenberg, K. Ertel, S. Lehmann, “Intercomparison of DIAL and Raman lidar measurements of humidity profiles,” in A. Dabas, C. Loth, J. Pelon, eds., Laser Remote Sensing of the Atmosphere, selected papers of the 20th International Laser Radar Conference (Edition Ecole Polytechnique, Palaiseau, France, 2001), pp. 293–298.
  12. S. Gassó, D. A. Hegg, “Comparison of columnar aerosol optical properties measured by the MODIS airborne simulator with in situ measurements: a case study,” Remote Sens. Environ. 66, 592–593 (1998). [CrossRef]
  13. U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 10.1029/2000JD000202 (2002). [CrossRef]
  14. R. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. 2. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements,” J. Geophys. Res. 103, 19673–19689 (1998). [CrossRef]
  15. R. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. 1. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998). [CrossRef]
  16. A. Ansmann, F. Wagner, D. Althausen, D. Müller, A. Herber, U. Wandinger, “European pollution outbreaks during ACE 2: lofted aerosol plumes observed with Raman lidar at the Portuguese coast,” J. Geophys. Res. 106, 20725–20733 (2001). [CrossRef]
  17. A. Ansmann, U. Wandinger, A. Wiedensohler, U. Leiterer, “Lindenberg aerosol characterization experiment 1998 (LACE 98): overview,” J. Geophys. Res. D 107, 10.1029/2000JD000233 (2002). [CrossRef]
  18. C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, A. Hågård, M. Iarlori, L. Komguem, S. Kreipl, G. Larchevêque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadenbosch, J. Schneider, V. Shcherbakov, M. Wiegner, “Aerosol lidar intercomparison in the frame of the EARLINET project. 2. Aerosol backscatter algorithms,” Appl. Opt. 43, 977–989 (2004). [CrossRef] [PubMed]
  19. G. Pappalardo, A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bösenberg, V. Matthias, F. DeTomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch, X. Wang, “Aerosol lidar intercomparisons in the framework of EARLINET. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio,” Appl. Opt., submitted for publication.
  20. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981). [CrossRef] [PubMed]
  21. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985). [CrossRef] [PubMed]
  22. F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482–489 (1972). [CrossRef]
  23. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984). [CrossRef] [PubMed]
  24. B. Edlen, “The dispersion of standard air,” J. Opt. Soc. Am. 43, 339 (1953). [CrossRef]
  25. L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km, 1968,” Environmental Research Paper 285, AFCRL-68-0153 (U.S. Air Force Research Laboratory, Cambridge, Mass., 1968).
  26. B. A. Bodhaine, N. B. Wood, E. G. Dutton, J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol. 16, 1854–1861 (1999). [CrossRef]
  27. Y. Sasano, E. V. Browell, S. Ismail, “Error caused by using a constant extinction/backscattering ratio in the lidar solution,” Appl. Opt. 24, 3929–3932 (1985). [CrossRef] [PubMed]
  28. V. A. Kovalev, H. Moosmüller, “Distortion of particulate extinction profiles measured with lidar in a two-component atmosphere,” Appl. Opt. 33, 6499–6507 (1994). [CrossRef] [PubMed]
  29. M. Matsumoto, N. Takeuchi, “Effects of misestimated far-end boundary values on two common lidar inversion solutions,” Appl. Opt. 33, 6451–6456 (1994). [CrossRef] [PubMed]
  30. J. Bösenberg, R. Timm, V. Wulfmeyer, “Study on retrieval algorithms for a backscatter lidar,” Final Rep. 226 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1997).
  31. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992). [CrossRef] [PubMed]
  32. J. Bösenberg, M. Alpers, D. Althausen, A. Ansmann, C. Böckmann, R. Eixmann, A. Franke, V. Freudenthaler, H. Giehl, H. Jäger, S. Kreipl, H. Linné, V. Matthias, I. Mattis, D. Müller, J. Sarközi, L. Schneidenbach, J. Schneider, T. Trickl, E. Vorobieva, U. Wandinger, M. Wiegner, “The German aerosol lidar network: methodology, data, analysis,” Rep. 317 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 2001).
  33. D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, S. Zörner, “Scanning six-wavelength eleven-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17, 1469–1482 (2000). [CrossRef]
  34. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirniov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited