OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 4 — Feb. 1, 2004
  • pp: 977–989

Aerosol Lidar Intercomparison in the Framework of the EARLINET Project. 2. Aerosol Backscatter Algorithms

Christine Böckmann, Ulla Wandinger, Albert Ansmann, Jens Bösenberg, Vassilis Amiridis, Antonella Boselli, Arnaud Delaval, Ferdinando De Tomasi, Max Frioud, Ivan Videnov Grigorov, Arne Hågård, Matej Horvat, Marco Iarlori, Leonce Komguem, Stephan Kreipl, Gilles Larchevêque, Volker Matthias, Alexandros Papayannis, Gelsomina Pappalardo, Francesc Rocadenbosch, Jose António Rodrigues, Johannes Schneider, Valery Shcherbakov, and Matthias Wiegner  »View Author Affiliations


Applied Optics, Vol. 43, Issue 4, pp. 977-989 (2004)
http://dx.doi.org/10.1364/AO.43.000977


View Full Text Article

Acrobat PDF (348 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An intercomparison of aerosol backscatter lidar algorithms was performed in 2001 within the framework of the European Aerosol Research Lidar Network to Establish an Aerosol Climatology (EARLINET). The objective of this research was to test the correctness of the algorithms and the influence of the lidar ratio used by the various lidar teams involved in the EARLINET for calculation of backscatter-coefficient profiles from the lidar signals. The exercise consisted of processing synthetic lidar signals of various degrees of difficulty. One of these profiles contained height-dependent lidar ratios to test the vertical influence of those profiles on the various retrieval algorithms. Furthermore, a realistic incomplete overlap of laser beam and receiver field of view was introduced to remind the teams to take great care in the nearest range to the lidar. The intercomparison was performed in three stages with increasing knowledge on the input parameters. First, only the lidar signals were distributed; this is the most realistic stage. Afterward the lidar ratio profiles and the reference values at calibration height were provided. The unknown height-dependent lidar ratio had the largest influence on the retrieval, whereas the unknown reference value was of minor importance. These results show the necessity of making additional independent measurements, which can provide us with a suitable approximation of the lidar ratio. The final stage proves in general, that the data evaluation schemes of the different groups of lidar systems work well.

© 2004 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.7030) Atmospheric and oceanic optics : Troposphere
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3640) Remote sensing and sensors : Lidar
(290.1350) Scattering : Backscattering
(290.2200) Scattering : Extinction

Citation
Christine Böckmann, Ulla Wandinger, Albert Ansmann, Jens Bösenberg, Vassilis Amiridis, Antonella Boselli, Arnaud Delaval, Ferdinando De Tomasi, Max Frioud, Ivan Videnov Grigorov, Arne Hågård, Matej Horvat, Marco Iarlori, Leonce Komguem, Stephan Kreipl, Gilles Larchevêque, Volker Matthias, Alexandros Papayannis, Gelsomina Pappalardo, Francesc Rocadenbosch, Jose António Rodrigues, Johannes Schneider, Valery Shcherbakov, and Matthias Wiegner, "Aerosol Lidar Intercomparison in the Framework of the EARLINET Project. 2. Aerosol Backscatter Algorithms," Appl. Opt. 43, 977-989 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-4-977


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, and J. Pelon, eds., Selected papers of the 20th International Laser Radar Conference, Vichy, France (Ecole-Polytechnique, Palaiseau, France, 2000), pp. 155–158.
  2. A. Ansmann, M. Riebsell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990).
  3. V. Matthias, J. Bösenberg, V. Freudenthaler, A. Amodeo, I. Balin, D. Balis, A. Chaykovski, G. Chourdakis, A. Comeron, A. Delaval, F. De Tomasi, R. Eixmann, A. Hågård, L. Komguem, S. Kreipl, R. Matthey, V. Rizi, J. A. Rodriguez, U. Wandinger, and X. Wang, “Aerosol lidar intercomparisons in the framework of the EARLINET project. 1. Instruments,” Appl. Opt. 43, 961–976 (2004).
  4. J. Bösenberg, M. Alpers, D. Althausen, A. Ansmann, C. Böckmann, R. Eixmann, A. Franke, V. Freudenthaler, H. Giehl, H. Jäger, S. Kreipl, H. Linne, V. Matthias, I. Mattis, M. Müller, J. Sarközi, L. Schneidenbach, J. Schneider, T. Trickl, E. Vorobieva, U. Wandinger, and M. Wiegner, “The German aerosol lidar network: methodology, data, analysis,” Rep. 317 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 2001).
  5. S. Godin, A. I. Carswell, D. P. Donovan, H. Claude, W. Steinbrecht, I. S. Mcdermid, T. J. McGee, M. R. Gross, H. Nakane, D. P. J. Swart, H. B. Bergwerff, O. Uchino, P. von der Gathen, and R. Neuber, “Ozone differential absorption lidar algorithm intercomparison,” Appl. Opt. 38, 6225–6236 (1999).
  6. W. Steinbrecht, H. Jäger, A. Adriani, G. di Donfrancesco, J. Barnes, G. Beyerle, R. Neuber, C. David, S. Godin, D. Donovan, A. I. Carswell, M. Gross, T. McGee, F. Masci, A. D’Altorio, V. Rizi, G. Visconti, I. S. McDermid, G. Megie, A. Mielke, B. Stein, C. Wedekind, T. Nagai, O. Uchino, H. Nakane, M. Osborn, and D. Winkler, “NDSC (Network for the Detection of Stratospheric Change) intercomparison of stratospheric aerosol processing algorithms,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 501–504.
  7. C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, S. Kreipl, G. Larchevêque, V. Matthias, A. Papayannis, F. Rocadenbosch, J. Schneider, V. Shcherbakov, and M. Wiegner, “EARLINET-backscatter lidar algorithm intercomparison,” in Proceedings of the 21st International Laser Radar Conference: Lidar Remote Sensing in Atmospheric and Earth Sciences, L. R. Bissonnette, G. Roy, and G. Vallee, eds.(Defence R&D Canada, Valcartier, Quebec, Canada, 2002), pp. 353–356.
  8. C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, S. Kreipl, G. Larchevêque, V. Matthias, A. Papayannis, F. Rocadenbosch, J. Schneider, V. Shcherbakov, and M. Wiegner, “EARLINET—lidar algorithm intercomparison,” J. Aerosol Sci. 32, S433–S434 (2001).
  9. A. Amodeo, G. Pappalardo, U. Wandinger, V. Matthias, J. Bösenberg, M. Alpers, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, G. Larchevêque, A. Papayannis, and X. Wang, “Raman lidar algorithm intercomparison in the frame of EARLINET,” in Proceedings of the 21st International Laser Radar Conference: Lidar Remote Sensing in Atmospheric and Earth Sciences, L. R. Bissonnette, G. Roy, and G. Vallee, eds. (Defence R&D Canada, Valcartier, Quebec, Canada 2002), pp. 349–352.
  10. G. Pappalardo, A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bösenberg, V. Matthias, V. Amiridis, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch, and X. Wang, “Aerosol lidar intercomparisons in the framework of EARLINET. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio,” Appl. Opt., submitted for publication.
  11. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
  12. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985).
  13. F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482–489 (1972).
  14. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
  15. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
  16. E. J. McCartney, Optics of the Atmosphere, Scattering by Molecules and Particles (Wiley, New York, 1976).
  17. B. A. Bodhaine, N. Wood, E. Dutton, and J. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol. 16, 1854–1861 (1999).
  18. Y. Sasano, E. V. Browell, and S. Ismail, “Error caused by using a constant extinction/backscattering ratio in the lidar solution,” Appl. Opt. 24, 3929–3932 (1985).
  19. V. A. Kovalev and H. Moosmüller, “Distortion of particulate extinction profiles measured with lidar in a two-component atmosphere,” Appl. Opt. 33, 6499–6507 (1994).
  20. M. Matsumoto and N. Takeuchi, “Effects of misestimated far-end boundary values on two common lidar inversion solutions,” Appl. Opt. 33, 6451–6456 (1994).
  21. J. Bösenberg, R. Timm, and V. Wulfmeyer, “Study on retrieval algorithms for a backscatter lidar,” Rep. 226 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1997).
  22. U.S. Committee on Extension to the Standard Atmosphere, U.S. Standard Atmosphere (National Oceanic and Atmospheric Administration, Washington, D.C., 1976).
  23. U. Wandinger and A. Ansmann, “Experimental determination of the lidar overlap profile with Raman lidar,” Appl. Opt. 41, 511–514 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited