OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 5 — Feb. 10, 2004
  • pp: 1009–1023

Volume holographic grating couplers: rigorous analysis by use of the finite-difference frequency-domain method

Shun-Der Wu and Elias N. Glytsis  »View Author Affiliations


Applied Optics, Vol. 43, Issue 5, pp. 1009-1023 (2004)
http://dx.doi.org/10.1364/AO.43.001009


View Full Text Article

Enhanced HTML    Acrobat PDF (1181 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two configurations of volume holographic grating couplers are rigorously analyzed by means of the finite-difference frequency-domain method (FDFD) for both TE and TM polarizations and for 0- and 45-deg output coupling. The two configurations depend on the position of the grating coupler, which can be placed either in the film or in the cover waveguide region. The FDFD results are compared with those obtained by the rigorous coupled-wave analysis in conjunction with the leaky-mode approach (RCWA–LM). Because the FDFD method is a rigorous solution of the Maxwell equations, it simulates the VHGC configuration and takes into account the waveguide-coupler discontinuity effects as well as the multimode excitation and interference effects, all of which are neglected by the traditional RCWA–LM.

© 2004 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1960) Diffraction and gratings : Diffraction theory
(050.7330) Diffraction and gratings : Volume gratings
(260.2110) Physical optics : Electromagnetic optics

History
Original Manuscript: June 23, 2003
Revised Manuscript: September 30, 2003
Published: February 10, 2004

Citation
Shun-Der Wu and Elias N. Glytsis, "Volume holographic grating couplers: rigorous analysis by use of the finite-difference frequency-domain method," Appl. Opt. 43, 1009-1023 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-5-1009


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. H. Ho, E. H. Lee, “Focusing-grating-coupler arrays for uniform and efficient signal distribution in a backboard optical interconnect,” Appl. Opt. 34, 5913–5919 (1995). [CrossRef]
  2. Q. Xing, S. Ura, T. Suhara, H. Nishihara, “Contra-directional coupling between stacked waveguides using grating couplers,” Opt. Commun. 144, 180–182 (1997). [CrossRef]
  3. R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000). [CrossRef]
  4. T. Tanaka, H. Takahashi, Y. Hibino, T. Hashimoto, A. Himeno, Y. Yamada, Y. Tohmori, “Hybrid external cavity lasers composed of spot-size converter integrated LDs and UV written Bragg grating in a planar lightwave circuit on Si,” IEICE Trans. Electron. E83-C, 875–883 (2000).
  5. T. Suhara, H. Hishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. 22, 845–867 (1986). [CrossRef]
  6. S. Ura, T. Suhara, H. Hishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. 4, 913–918 (1986). [CrossRef]
  7. S. Nishiwaki, J. Asada, S. Uchida, “Optical head employing a concentric-circular focusing grating coupler,” Appl. Opt. 33, 1819–1827 (1994). [CrossRef] [PubMed]
  8. S. Ura, R. Nishida, T. Suhara, H. Nishihara, “Wavelength-selective coupling among three vertically integrated waveguides by grating couplers,” IEEE Photon. Technol. Lett. 13, 133–135 (2001). [CrossRef]
  9. S. Ura, R. Nishida, T. Suhara, H. Nishihara, “Wavelength-selective coupling between vertically integrated thin-film waveguides via supermode by a pair of grating couplers,” IEEE Photon. Technol. Lett. 13, 678–680 (2001). [CrossRef]
  10. J. Backlund, J. Bengtsson, C.-F. Carlström, A. Larsson, “Waveguide input grating couplers for wavelength-division multiplexing and wavelength encoding,” IEEE Photon. Technol. Lett. 13, 815–817 (2001). [CrossRef]
  11. S. Ura, H. Sunagawa, T. Suhara, H. Nishihara, “Focusing grating couplers for polarization detection,” J. Lightwave Technol. 6, 1028–1032 (1988). [CrossRef]
  12. S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensors using linearly focusing grating couplers,” IEEE Photon. Technol. Lett. 6, 239–241 (1994). [CrossRef]
  13. J. Dübendorfer, R. E. Kunz, “Compact integrated optical immunosensor using replicated chirped grating coupler sensor chips,” Appl. Opt. 37, 1890–1894 (1998). [CrossRef]
  14. M. Wiki, R. E. Kunz, “Wavelength-interrogated optical sensors for biochemical applications,” Opt. Lett. 25, 463–465 (2000). [CrossRef]
  15. D. Mehuys, A. Hardy, D. F. Welch, R. G. Waarts, R. Parke, “Analysis of detuned second-order grating output couplers with an integrated superlattice reflectors,” IEEE Photon. Technol. Lett. 3, 342–344 (1991). [CrossRef]
  16. M. Oh, S. Ura, T. Suhara, H. Nishihara, “Integrated-optics focal-spot intensity modulator using electro-optic polymer waveguide,” J. Lightwave Technol. 12, 1569–1576 (1994). [CrossRef]
  17. N. Eriksson, M. Hagberg, A. Larsson, “Highly efficient grating-coupled surface-emitters with single outcoupling elements,” IEEE Photon. Technol. Lett. 7, 1394–1396 (1995). [CrossRef]
  18. V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, O. Oarriaux, “Optimization and control of grating coupling to or from a silicon-based optical waveguide,” Opt. Eng. 35, 3092–3100 (1996). [CrossRef]
  19. J. C. Brazas, L. Li, A. L. Mckeon, “High-efficiency input coupling into optical waveguides using gratings with double-surface corrugation,” Appl. Opt. 34, 604–609 (1995). [CrossRef] [PubMed]
  20. M. Hagberg, T. Kjellberg, N. Eriksson, A. G. Larsson, “Demonstration of blazing effect in second order gratings under resonant condition,” Electron. Lett. 30, 410–412 (1994). [CrossRef]
  21. M. Hagberg, N. Eriksson, T. Kjellberg, A. G. Larsson, “Demonstration of blazing effect in detuned second order gratings,” Electron. Lett. 30, 570–571 (1994). [CrossRef]
  22. M. Li, S. Sheard, “Experimental study of waveguide grating couplers with parallelogramic tooth profiles,” Opt. Eng. 35, 3101–3106 (1996). [CrossRef]
  23. T. Liao, S. Sheard, M. Li, J. Zhu, P. Prewett, “High-efficiency focusing waveguide grating couplers with parallelogramic groove profiles,” J. Lightwave Technol. 15, 1142–1148 (1997). [CrossRef]
  24. H. Kogelnik, T. P. Sosnowski, “Holographic thin film couplers,” Bell Syst. Tech. J. 49, 1602–1608 (1970).
  25. F. Lin, E. M. Strzelecki, T. Jannson, “Optical multiplanar VLSI interconnects based on multiplexed waveguide holograms,” Appl. Opt. 29, 1126–1133 (1990). [CrossRef] [PubMed]
  26. Q. Huang, P. R. Ashley, “Holographic Bragg grating input-output couplers for polymer waveguides at an 850-nm wavelength,” Appl. Opt. 36, 1198–1203 (1997). [CrossRef] [PubMed]
  27. S. M. Schultz, E. N. Glytsis, T. K. Gaylord, “Design of a high-efficiency volume grating coupler for line focusing,” Appl. Opt. 37, 2278–2287 (1998). [CrossRef]
  28. S. M. Schultz, E. N. Glytsis, T. K. Gaylord, “Volume grating preferential-order focusing waveguide coupler,” Opt. Lett. 24, 1708–1710 (1999). [CrossRef]
  29. S. M. Schultz, E. N. Glytsis, T. K. Gaylord, “Design, fabrication, and performance of preferential-order volume grating waveguide couplers,” Appl. Opt. 39, 1223–1232 (2000). [CrossRef]
  30. S. T. Peng, T. Tamir, H. L. Bertoni, “Leaky-wave analysis of optical periodic couplers,” Electron. Lett. 9, 150–152 (1973). [CrossRef]
  31. S. T. Peng, T. Tamir, H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theory Tech. 23, 123–133 (1975). [CrossRef]
  32. T. Tamir, S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977). [CrossRef]
  33. N. Izhaky, A. Hardy, “Analysis of grating-assisted backward coupling employing the unified coupled-mode formalism,” J. Opt. Soc. Am. A 16, 1303–1311 (1999). [CrossRef]
  34. N. Izhaky, A. Hardy, “Characteristics of grating-assisted couplers,” Appl. Opt. 38, 6987–6993 (1999). [CrossRef]
  35. P.-P. Borsboom, H. J. Frankena, “Field analysis of two-dimensional integrated optical gratings,” J. Opt. Soc. Am. A 12, 1134–1141 (1995). [CrossRef]
  36. P.-P. Borsboom, H. J. Frankena, “Field analysis of two-dimensional focusing grating couplers,” J. Opt. Soc. Am. A 12, 1142–1146 (1995). [CrossRef]
  37. P. G. Dinesen, J. S. Hesthaven, “Fast and accurate modeling of waveguide grating couplers,” J. Opt. Soc. Am. A 17, 1565–1572 (2000). [CrossRef]
  38. P. G. Dinesen, J. S. Hesthaven, “Fast and accurate modeling of waveguide grating couplers. II. Three-dimensional vectorial case,” J. Opt. Soc. Am. A 18, 2876–2885 (2001). [CrossRef]
  39. P. Lalanne, E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Lett. 25, 1092–1094 (2000). [CrossRef]
  40. E. Silberstein, P. Lalanne, J.-P. Hugonin, Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001). [CrossRef]
  41. Q. Cao, P. Lalanne, J.-P. Hugonin, “Stable and efficient Bloch-mode computational method for one-dimensional grating waveguides,” J. Opt. Soc. Am. A 19, 335–338 (2002). [CrossRef]
  42. J. H. Harris, R. K. Winn, D. G. Dalgoutte, “Theory and design of periodic couplers,” Appl. Opt. 11, 2234–2241 (1972). [CrossRef] [PubMed]
  43. K. Ogawa, W. S. C. Chang, “Analysis of holographic thin film grating coupler,” Appl. Opt. 12, 2167–2171 (1973). [CrossRef] [PubMed]
  44. W. Y. Wang, T. J. DiLaura, “Bragg effect waveguide coupler analysis,” Appl. Opt. 16, 3230–3236 (1977). [CrossRef] [PubMed]
  45. M. L. Jones, R. P. Kenna, C. M. Verber, “Rectangular characteristics gratings for waveguide input and output coupling,” Appl. Opt. 34, 4149–4158 (1995). [CrossRef] [PubMed]
  46. R. A. Villalaz, E. N. Glytsis, T. K. Gaylord, “Volume grating couplers: polarization and loss effect,” Appl. Opt. 41, 5223–5229 (2002). [CrossRef] [PubMed]
  47. W.-C. Liu, M. W. Kowarz, “Vector diffraction from subwavelength optical disk structures: two-dimensional modeling of near-field profiles, far-field intensities, and detector signals from DVD,” Appl. Opt. 38, 3787–3797 (1999). [CrossRef]
  48. S.-D. Wu, E. N. Glytsis, “Finite-number-of-periods holographic gratings with finite-width incident beams: analysis using the finite-difference frequency-domain method,” J. Opt. Soc. Am. A 19, 2018–2029 (2002). [CrossRef]
  49. J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Scalar integral diffraction methods: unification, accuracy, and comparison with a rigorous boundary element method with application to diffractive cylindrical lenses,” J. Opt. Soc. Am. A 15, 1822–1837 (1998). [CrossRef]
  50. Z. S. Sacks, D. M. Kingsland, R. Lee, J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas. Propag. 43, 1460–1463 (1995). [CrossRef]
  51. S.-D. Wu, E. N. Glytsis, “Holographic grating formation in photopolymers: analysis and experimental results based on a nonlocal diffusion model and the rigorous coupled-wave analysis,” J. Opt. Soc. Am. B 20, 1177–1188 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited