OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 5 — Feb. 10, 2004
  • pp: 1063–1071

Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation

James W. M. Chon and Min Gu  »View Author Affiliations


Applied Optics, Vol. 43, Issue 5, pp. 1063-1071 (2004)
http://dx.doi.org/10.1364/AO.43.001063


View Full Text Article

Enhanced HTML    Acrobat PDF (456 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new type of total internal reflection fluorescence microscopy (TIRFM) called scanning TIRFM (STIRFM) that uses a focused ring-beam illumination and a high-numerical-aperture objective (NA = 1.65). The evanescent field produced by the STIRFM is focused laterally, producing a small excitation volume that can induce a nonlinear effect such as two-photon absorption. Experimental images of CdSe quantum dot nanocrystals and Rhodamine 6G-doped microbeads show that good lateral and axial resolutions are achieved with the current setup. The theoretical simulation of the focal spot produced in STIRFM geometry shows that the focused evanescent field is split into two peaks because of the depolarization effect of a high numerical-aperture objective lens. However, the point-spread function analysis of both one-photon and two-photon excitation cases shows that the detection of the focus-splitting effect is dependent on the detection pinhole size. The effect of pinhole size on image formation is theoretically investigated and confirmed experimentally with the nanocrystal images.

© 2004 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(180.5810) Microscopy : Scanning microscopy
(190.4180) Nonlinear optics : Multiphoton processes

History
Original Manuscript: April 10, 2003
Revised Manuscript: October 27, 2003
Published: February 10, 2004

Citation
James W. M. Chon and Min Gu, "Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation," Appl. Opt. 43, 1063-1071 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-5-1063

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited