OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 5 — Feb. 10, 2004
  • pp: 1121–1130

Real-time all-optical quality of service monitoring by use of correlation and a network protocol to exploit it

Betty Lise Anderson, Arjan Durresi, David Rabb, and Feras Abou-Galala  »View Author Affiliations

Applied Optics, Vol. 43, Issue 5, pp. 1121-1130 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (222 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose to use optical correlation to measure the quality of an optical link in real time, staying completely within the optical domain. We transmit a test signal of 010 and correlate the received (degraded) signal with 010. The strength and shape of the output measure dispersion and attenuation in just 3 bit periods (75 ps at 40 Gb/s) compared with minutes by traditional methods. Correlation becomes feasible owing to the recent development of tapped delay lines with very large numbers of taps. We present simulations showing that this technique can detect attenuation, dispersion, noise, and jitter. With this instantaneous quality-of-service information available to all nodes in a network, new protocols will enable the network to select paths based on quality, allowing service providers to take into account the system’s physical impairments when selecting new light paths or when restoring existing ones and to guarantee varying levels of service. We present one such protocol.

© 2004 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4250) Fiber optics and optical communications : Networks
(070.4550) Fourier optics and signal processing : Correlators

Original Manuscript: March 26, 2003
Revised Manuscript: November 4, 2003
Published: February 10, 2004

Betty Lise Anderson, Arjan Durresi, David Rabb, and Feras Abou-Galala, "Real-time all-optical quality of service monitoring by use of correlation and a network protocol to exploit it," Appl. Opt. 43, 1121-1130 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. L. Anderson, R. Mital, “Polynomial-based optical true-time delay devices using MEMs,” Appl. Opt. 41, 5449–5461 (2002). [CrossRef] [PubMed]
  2. C. Assi, A. Shami, M. A. Ali, R. Kurtz, D. Guo, “Optical networking and real-time provisioning: an integrate visions for the next generation Internet,” IEEE Netw. 15, 36–45 (2001). [CrossRef]
  3. P. H. Ho, H. T. Mouftah, “A novel routing protocol for WDM mesh networks,” Conference on Optical Fiber Communication, Vol. 70 of 2002 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2002), pp. 38–39.
  4. J. Spath, “Dynamic routing strategies for WDM networks,” Computer Networks (Elsevier, New York, 2000), pp. 523–542.
  5. C. F. Hsu, T. L. Liu, N. F. Huang, “On adaptive routing in wavelength-routed networks,” Opt. Netw. Mag. 3(1), 15–24 (2002).
  6. J. Strand, A. Chiu, “Impairments and other constraints on optical layer routing,” http://www.ietf.org/internet-drafts/draft-ietf-ipo-impairments-04.txt . (Internet Engineering Task Force, May2001), retrieved December2002.
  7. I. Shakei, H. Takara, “Transparent and flexible performance monitoring using amplitude histogram method,” Conference on Optical Fiber Communication, Vol. 70 of 2002 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2002), pp. 19–21. [CrossRef]
  8. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 868–689.
  9. R. A. Sprague, C. L. Koliopoulos, “Time integrating acousto-optic correlator,” Appl. Opt. 15, 89–92 (1976). [CrossRef] [PubMed]
  10. R. J. Berinato, “Acousto-optic tapped delay line filter,” Appl. Opt. 32, 5797–5809 (1995). [CrossRef]
  11. J. Campany, J. Cascón, D. Pastor, B. Ortega, “Reconfigurable fiber-optic delay line filters incorporating electrooptic and electroabsorption modulators,” IEEE Photon. Technol. Lett. 11, 1174–1176 (1999). [CrossRef]
  12. C. T. Chang, J. A. Cassaboom, H. F. Taylor, “Fibre-optic delay-line devices for R. F. signal processing,” Electron. Lett. 13, 678–680 (1977). [CrossRef]
  13. J. E. Bowers, S. A. Newton, W. V. Sorin, H. J. Shaw, “Filter response of single-mode fibre recirculating delay lines,” Electron. Lett. 18, 110–111 (1982). [CrossRef]
  14. K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–209 (1985). [CrossRef]
  15. S. A. Newton, K. P. Jackson, H. J. Shaw, “Optical fiber V-groove transversal filter,” Appl. Phys. Lett. 43, 149–151 (1983). [CrossRef]
  16. G. W. Euliss, R. A. Athale, “Time-integrating correlator based on fiber-optic delay lines,” Opt. Lett. 19, 649–651 (1994). [CrossRef] [PubMed]
  17. A. G. Podoleanu, R. K. Harding, D. A. Jackson, “Low-cost high-speed multichannel fiber-optic correlator,” Opt. Lett. 20, 112–114 (1995). [CrossRef] [PubMed]
  18. D. M. Gookin, M. H. Berry, “Finite impulse response filter with large dynamic range and high sampling rate,” Appl. Opt. 29, 1061–1062 (1990). [CrossRef] [PubMed]
  19. K.-I. Kitayama, N. Wada, H. Sotobayashi, “Architectural considerations for photonic IP router based on optical code correlation,” J. Lightwave Technol. 18, 1834–1843 (2000). [CrossRef]
  20. N. Wada, K. Kitayama, “A 10 Gb/s optical code division multiplexing using 9-chip optical bipolar code and coherent detection,” J. Lightwave Technol. 17, 1758–1765 (1999). [CrossRef]
  21. K. Sasayama, M. Okuno, K. Habara, “Photonic FDM multichannel selector using coherent transversal filter,” J. Lightwave Technol. 12, 664–669 (1994). [CrossRef]
  22. S. P. Wan, Y. Hu, “Two-dimensional optical CDMA differential systems with prime/OOC codes,” IEEE Photon. Technol. Lett. 13, 1373–1375 (2001). [CrossRef]
  23. J. H. Lee, P. C. Teh, P. Petropoulos, M. Ibsen, D. Richardson, “A grating-based OCDMA coding-decoding system incorporating a nonlinear optical loop mirror for improved code recognition and noise reduction,” J. Lightwave Technol. 20, 36–46 (2002). [CrossRef]
  24. B. Moslehi, J. W. Goodman, “Novel amplified fiber optic recirculating delay line processor,” J. Lightwave Technol. 10, 1142–1146 (1992). [CrossRef]
  25. S. Yegnanarayanan, P. D. Trinh, B. Jalali, “Recirculating photonic filter: a wavelength-selective time delay for phased-array antennas and wavelength code-division multiple access,” Opt. Lett. 21, 740–742 (1996). [CrossRef] [PubMed]
  26. P. R. Prucnal, M. A. Santoro, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol. LT-4, 547–554 (1986). [CrossRef]
  27. Y. L. Chang, M. E. Marhic, “Fiber-optic ladder networks for inverse decoding coherent CDMA,” J. Lightwave Technol. 10, 1952–1062 (1992). [CrossRef]
  28. B. Moslehi, “Fiber-optic filters employing optical amplifiers to provide design flexibility,” Electron. Lett. 28, 226–228 (1992). [CrossRef]
  29. P. C. Teh, P. Petropolous, M. Ibsen, D. J. Richardson, “A comparative study of the performance of seven- and 63-chip optical code-division multiple access encoders and decorders based on superstructured fiber Bragg gratings,” J. Lightwave Technol. 19, 1352–1365 (2001). [CrossRef]
  30. B. L. Anderson, C. D. Liddle, “Optical true-time delay for phased array antennas: demonstration of a quadratic White cell,” Appl. Opt. 41, 4912–4921 (2002). [CrossRef] [PubMed]
  31. A. Rader, B. L. Anderson, “Demonstration of a linear optical true-time delay device using a microelectromechanical mirror array,” Appl. Opt. 42, 1409–1416 (2003). [CrossRef] [PubMed]
  32. Ns-2 is available at http://www.isi.edu/nsnam/ns/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited