OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 5 — Feb. 10, 2004
  • pp: 1131–1139

Partial spatial coherence effects in digital holographic microscopy with a laser source

Frank Dubois, Maria-Luisa Novella Requena, Christophe Minetti, Olivier Monnom, and Eric Istasse  »View Author Affiliations

Applied Optics, Vol. 43, Issue 5, pp. 1131-1139 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (2085 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate a digital holographic microscope that permits us to modify the spatial coherence state of the sample illumination by changing the spot size of a laser beam on a rotating ground glass. Out-of-focus planes are refocused by digital holographic reconstruction with numerical implementation of the Kirchhoff-Fresnel integral. The partial coherence nature of the illumination reduces the coherent artifact noise with respect to fully coherent illumination. The investigated configuration allows the spatial coherence state to be changed without modifying the illumination level of the sample. The effect of the coherence state on the digital holographic reconstruction is theoretically and experimentally evaluated. We also show how multiple reflection interferences are limited by the use of reduced spatial coherent illumination.

© 2004 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.4280) Coherence and statistical optics : Noise in imaging systems
(090.1760) Holography : Computer holography
(100.6890) Image processing : Three-dimensional image processing
(180.3170) Microscopy : Interference microscopy

Original Manuscript: March 13, 2003
Revised Manuscript: September 29, 2003
Published: February 10, 2004

Frank Dubois, Maria-Luisa Novella Requena, Christophe Minetti, Olivier Monnom, and Eric Istasse, "Partial spatial coherence effects in digital holographic microscopy with a laser source," Appl. Opt. 43, 1131-1139 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Schnars, W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef] [PubMed]
  2. K. Creath, “Temporal phase measurement methods,” in Interferogram Analysis: Digital Fringe Pattern Analysis, D. W. Robinson, G. T. Reid, eds. (Institute of Physics, London, 1993), pp. 94–140.
  3. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef] [PubMed]
  4. B. Skarman, K. Wozniac, J. Becker, “Simultaneous 3D-PIV and temperature measurement using a New CCD based holographic interferometer,” Flow Meas. Instrum. 7, 1–6 (1996). [CrossRef]
  5. T. M. Kreis, W. P. O. Jüptner, “Principle of digital holography,” in Fringe ’97: Proceedings of the Third International Workshop on Automatic Processing of Fringe Patterns, Bremen, Germany, 1997 (Akademie, Berlin, 1997), pp. 353–363.
  6. B. Nilsson, T. E. Carlsson, “Direct three-dimensional shape measurement by digital light-in-flight holography,” Appl. Opt. 37, 7954–7959 (1998). [CrossRef]
  7. E. Cuche, F. Bevilacqua, C. Depeursinge, “Digital holography for quantitative phase contrast imaging,” Opt. Lett. 24, 291–293 (1999). [CrossRef]
  8. D. O. Hogenboom, C. A. Dimarzio, T. J. Gaudette, A. J. Devaney, S. C. Lindberg, “Three-dimensional images generated by quadrature interferometry,” Opt. Lett. 23, 783–785 (1998). [CrossRef]
  9. M. Adams, T. M. Kreis, W. P. O. Jüptner, “Particle size and position measurement with digital holography,” in Optical Inspection and Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 234–240 (1998). [CrossRef]
  10. B. Javidi, E. Tajahuerce, “Encrypting three-dimensional information with digital holography,” Opt. Lett. 39, 6595–6601 (2000).
  11. F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999). [CrossRef]
  12. F. Dubois, O. Monnom, C. Yourassowsky, J.-C. Legros, “Border processing in digital holography by extension of the digital hologram and reduction of the higher spatial frequencies,” Appl. Opt. 41, 2621–2626 (2002). [CrossRef] [PubMed]
  13. F. Dubois, C. Minetti, O. Monnom, C. Yourassowsky, J.-C. Legros, “Pattern recognition with digital holographic microscope working in partially coherent illumination,” Appl. Opt. 41, 4108–4119 (2002). [CrossRef] [PubMed]
  14. T. Zhang, I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998). [CrossRef]
  15. Y. Takaki, H. Ohzu, “Hybrid holographic microscopy: visualization of three-dimensional object information by use of viewing angles,” Appl. Opt. 39, 5302–5308 (2000). [CrossRef]
  16. I. Yamaguchi, J.-I. Kato, S. Otha, J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177–6186 (2001). [CrossRef]
  17. F. Dubois, L. Joannes, J.-C. Legros, “Improved three-dimensional imaging with digital holography microscope using a partial spatial coherent source,” Appl. Opt. 38, 7085–7094 (1999). [CrossRef]
  18. P. Klysubun, G. Indebetouw, “A posteriori processing of spatiotemporal digital microholograms,” J. Opt. Soc. Am. A 18, 326–331 (2001). [CrossRef]
  19. P. Klysubun, G. Indebetouw, “Spatiotemporal digital microholography,” J. Opt. Soc. Am. A 18, 319–325 (2001). [CrossRef]
  20. B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 19, 1506–1508 (1997). [CrossRef]
  21. G. Indebetouw, T. Kim, T.-C. Poon, B. W. Schilling, “Three-dimensional location of fluorescent inhomogeneities in turpid media by scanning heterodyne holography,” Opt. Lett. 23, 135–137 (1998). [CrossRef]
  22. P. Chavel, “Optical noise and temporal coherence,” J. Opt. Soc. Am. 70, 935–943 (1980). [CrossRef]
  23. J. Goodman, Statistical Optics (Wiley, New York, 1985).
  24. M. Nazarathy, J. Shamir, “Fourier optics described by operator algebra,” J. Opt. Soc. Am. 70, 150–159 (1980). [CrossRef]
  25. D. W. Robinson, G. T. Reid, eds., Interferogram Analysis: Digital Fringe Pattern Measurement Techniques (Institute of Physics, London, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited