OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 5 — Feb. 10, 2004
  • pp: 1149–1155

Effective gray scale in lithographically scribed planar holographic bragg reflectors

Dmitri Iazikov, Christoph Greiner, and Thomas W. Mossberg  »View Author Affiliations

Applied Optics, Vol. 43, Issue 5, pp. 1149-1155 (2004)

View Full Text Article

Acrobat PDF (135 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that holographic Bragg reflector grating structures, which are photolithographically scribed in planar waveguides, support a unique approach to apodization and overlay that uses fixed-depth etching and partial contour writing to achieve continuous reflective amplitude control.

© 2004 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(060.2340) Fiber optics and optical communications : Fiber optics components
(090.2890) Holography : Holographic optical elements
(230.1480) Optical devices : Bragg reflectors
(230.7400) Optical devices : Waveguides, slab

Dmitri Iazikov, Christoph Greiner, and Thomas W. Mossberg, "Effective gray scale in lithographically scribed planar holographic bragg reflectors," Appl. Opt. 43, 1149-1155 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
  2. J. L. Rebola and A. V. T. Cartaxo, “Performance optimization of Gaussian apodized fiber Bragg grating filters in WDM systems,” J. Lightwave Technol. 8, 1537–1544 (2002).
  3. A. Carballar, M. A. Muriel, and J. Azana, “Fiber grating filter for WDM systems: an improved design,” IEEE Photonics Technol. Lett. 11, 694–696 (1999).
  4. T. Komukai, K. Tamura, and M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photonics Technol. Lett. 9, 934–936 (1997).
  5. C. Marra, A. Nirmalathas, D. Novak, C. Lim, L. Reekie, J. A. Besley, C. Weeks, and N. Baker, “Wavelength-interleaved OADMs incorporating optimized multiple phase-shifted FBGs for fiber-radio systems,” J. Lightwave Technol. 21, 32–39 (2003).
  6. K. O. Hill, B. Malo, F. Bilodeau, S. Theriault, D. C. Johnson, and J. Albert, “Variable-spectral-response optical waveguide Bragg grating filters for optical signal processing,” Opt. Lett. 20, 1438–1440 (1995).
  7. A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, and J. N. Sweetser, “Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
  8. D. Wiesmann, C. David, R. Germann, D. Erni, and G. L. Bona, “Apodized surface-corrugated gratings with varying duty cycles,” IEEE Photonics Technol. Lett. 12, 639–641 (2000).
  9. D. Wiesmann, R. Germann, G. L. Bona, C. David, D. Erni, and H. Jackel, “Add-drop filter based on apodized surface-corrugated gratings,” J. Opt. Soc. Am. B 20, 417–423 (2003).
  10. Y. Shibata, T. Tamamura, S. Oku, and Y. Kondo, “Coupling coefficient modulation of waveguide grating using sampled grating,” IEEE Photonics Technol. Lett. 6, 1222–1224 (1994).
  11. T. W. Mossberg, “Planar holographic optical processing devices,” Opt. Lett. 26, 414–416 (2001).
  12. C. Greiner, D. Iazikov, and T. W. Mossberg, “Lithographically scribed, focusing, planar holographic Bragg reflector with 17-GHz passband and 0.3 cm2 footprint,” presented at the Optical Fiber Communication Conference, postdeadline Paper PD31, Atlanta, Ga., March 23–28, 2003.
  13. T. Erdogan and D. G. Hall, “Circularly symmetric distributed feedback laser: coupled mode treatment of TE vector fields,” IEEE J. Quantum Electron. 28, 612–623 (1992).
  14. R. H. Jordan and D. G. Hall, “Highly directional surface emission from concentric-circle gratings on planar optical waveguides: the field expansion method,” J. Opt. Soc. Am. A 12, 84–94 (1995).
  15. R. H. Jordan, D. G. Hall, O. King, G. Wicks, and S. Rishton, “Lasing behavior of circular grating surface emitting semiconductor lasers,” J. Opt. Soc. Am. B 14, 449–453 (1997).
  16. A. A. Tovar and G. H. Clark, “Concentric-circle-grating, surface-emitting laser beam propagation in complex optical systems,” J. Opt. Soc. Am. A 14, 3333–3340 (1997).
  17. C. Olson and D. G. Hall, “Azimuthal mode discrimination in radially chirped concentric-circle-grating distributed feedback lasers,” IEEE J. Quantum Electron. 36, 1016–1025 (2000).
  18. S. Kristjansson, N. Eriksson, A. Larsson, R. S. Penner, and M. Fallahi, “Observation of stable cylindrical modes in electrically pumped circular grating-coupled surface-emitting lasers,” Appl. Opt. 39, 1946–1953 (2000).
  19. J. Backlund, J. Bengtsson, C. Carlstrom, and A. Larsson, “Incoupling waveguide holograms for simultaneous focusing into multiple arbitrary positions,” Appl. Opt. 38, 5738–5746 (1999).
  20. M. Li, B. S. Luo, C. P. Grover, Y. Feng, and H. C. Liu, “Waveguide grating coupler with a tailored spectral response based on a computer-generated waveguide hologram,” Opt. Lett. 24, 655–657 (1999).
  21. J. Backlund, J. Bengtsson, C. Carlstrom, and A. Larsson, “Input waveguide grating couplers designed for a desired wavelength and polarization response,” Appl. Opt. 41, 2818–2825 (2002).
  22. C. H. Henry, R. F. Kazarinov, Y. Shani, R. C. Kistler, V. Pol, and K. J. Orlowsky, “Four-channel wavelength division multiplexers and bandpass filters based on elliptical Bragg reflectors,” J. Lightwave Technol. 8, 748–755 (1990).
  23. C. Greiner, T. W. Mossberg, and D. Iazikov, “Bandpass engineering of lithographically scribed channel-waveguide Bragg gratings,” Opt. Lett. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited