OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 6 — Feb. 20, 2004
  • pp: 1241–1249

Simultaneous measurement of surface shape and variation in optical thickness of a transparent parallel plate in wavelength-scanning Fizeau interferometer

Kenichi Hibino, Bozenko F. Oreb, Philip S. Fairman, and Jan Burke  »View Author Affiliations


Applied Optics, Vol. 43, Issue 6, pp. 1241-1249 (2004)
http://dx.doi.org/10.1364/AO.43.001241


View Full Text Article

Enhanced HTML    Acrobat PDF (420 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wavelength-scanning interferometry permits the simultaneous measurement of variations in surface shape and optical thickness of a nearly parallel plate. Interference signals from both surfaces of the test plate can be separated in frequency space; however, these frequencies are shifted from the expected frequency by the refractive-index dispersion of the test plate and any nonlinearity that is due to wavelength scanning. Conventional Fourier analysis is sensitive to this detuning of the signal frequency and suffers from multiple-beam interference noise. We propose new wavelength-scanning algorithms that permit a large tolerance for dispersion of the test plate and nonlinearity of scanning. Two 19-sample algorithms that suppress multiple-interference noise up to the second order of the reflectance of the test plate are presented. Experimental results show that the variation in surface shape and optical thickness of a glass parallel plate of 250-mm diameter was measured with a resolution of 1–2 nm rms.

© 2004 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology

History
Original Manuscript: July 17, 2003
Revised Manuscript: October 22, 2003
Published: February 20, 2004

Citation
Kenichi Hibino, Bozenko F. Oreb, Philip S. Fairman, and Jan Burke, "Simultaneous measurement of surface shape and variation in optical thickness of a transparent parallel plate in wavelength-scanning Fizeau interferometer," Appl. Opt. 43, 1241-1249 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-6-1241


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. V. Mantravadi, “Testing nearly parallel plates,” in Optical Shop Testing, D. Malacara, ed. (Wiley, New York, 1992), p. 22.
  2. J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, K. Merkel, “Digital wavefront measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432 (1983). [CrossRef] [PubMed]
  3. K. Freischlad, “Large flat panel profiler,” in Flatness, Roughness, and Discrete Defect Characterization for Computer Disks, Wafers and Flat Panel Displays, J. C. Stover, ed. Proc. SPIE2862, 163–171 (1996). [CrossRef]
  4. P. de Groot, “Grating interferometer for metrology of transparent flats,” in Optical Fabrication and Testing, Vol. 6 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 28–30.
  5. P. G. Dewa, A. W. Kulawiec, “Grazing incidence interferometry for measuring transparent plane-parallel plates,” U.S. patent5,923,425 (13July1999).
  6. Y. Ishii, J. Chen, K. Murata, “Digital phase-measuring interferometry with a tunable laser diode,” Opt. Lett. 12, 233–235 (1987). [CrossRef] [PubMed]
  7. K. Okada, H. Sakuta, T. Ose, J. Tsujiuchi, “Separate measurements of surface shapes and refractive index inhomogeneity of an optical element using tunable-source phase shifting interferometry,” Appl. Opt. 29, 3280–3285 (1990). [CrossRef] [PubMed]
  8. A. Sekine, I. Minegishi, H. Koizumi, “Axial eye-length measurement by wavelength-shift interferometry,” J. Opt. Soc. Am. A 10, 1651–1655 (1993). [CrossRef] [PubMed]
  9. M. Takeda, H. Yamamoto, “Fourier-transform speckle profilometry: three dimensional shape measurements of diffuse objects with large height steps and/or spatially isolated surfaces,” Appl. Opt. 33, 7829–7837 (1994). [CrossRef] [PubMed]
  10. H. J. Tiziani, B. Franze, P. Haible, “Wavelength shift speckle interferometry for absolute profilometry using a mode-hop free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997). [CrossRef]
  11. F. Lexer, C. K. Hitzenberger, A. F. Fercher, M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Appl. Opt. 36, 6548–6552 (1997). [CrossRef]
  12. H. Hiratsuka, E. Kido, T. Yoshimura, “Simultaneous measurements of three-dimensional reflectivity distributions in scattering media based on optical frequency-domain reflectometry,” Opt. Lett. 23, 1420–1422 (1998). [CrossRef]
  13. P. J. de Groot, “Measurement of transparent plates with wavelength-tuned phase-shifting interferometry,” Appl. Opt. 39, 2658–2663 (2000). [CrossRef]
  14. L. L. Deck, “Multiple surface phase shifting interferometry,” in Optical Manufacturing and Testing IV, H. P. Stahl, ed., Proc. SPIE4451, 424–431 (2001). [CrossRef]
  15. K. Hibino, T. Takatsuji, “Suppression of multiple-beam interference noise in testing an optical parallel plate by wavelength-scanning interferometry,” Opt. Rev. 9, 60–65 (2002). [CrossRef]
  16. A. Yamamoto, I. Yamaguchi, “Profilometry of sloped plane surfaces by wavelength scanning interferometry,” Opt. Rev. 9, 112–121 (2002). [CrossRef]
  17. P. Hariharan, “Phase-stepping interferometry with laser diodes: effect of changes in laser power with output wavelength,” Appl. Opt. 28, 27–29 (1989). [CrossRef] [PubMed]
  18. Y. Ishii, R. Onodera, “Phase-extraction algorithm in laser-diode phase-shifting interferometry,” Opt. Lett. 20, 1883–1885 (1995). [CrossRef] [PubMed]
  19. P. Sandoz, T. Gharbi, G. Tribillon, “Phase-shifting methods for interferometers using laser-diode frequency-modulation,” Opt. Commun. 132, 227–231 (1996). [CrossRef]
  20. G. Coppola, P. Ferraro, M. Iodice, S. D. Nicola, “Method for measuring the refractive index and the thickness of transparent plates with a lateral-shear, wavelength-scanning interferometer,” Appl. Opt. 42, 3882–3887 (2003). [CrossRef] [PubMed]
  21. K. Hibino, B. F. Oreb, P. S. Fairman, “Wavelength-scanning interferometry of a transparent parallel plate with refractive index dispersion,” Appl. Opt. 42, 3888–3895 (2003). [CrossRef] [PubMed]
  22. D. W. Phillion, “General method for generating phase-shifting interferometry algorithms,” Appl. Opt. 36, 8098–8115 (1997). [CrossRef]
  23. K. Freischald, C. Koliopoulos, “Fourier description of digital phase-measuring interferometry,” J. Opt. Soc. Am. A 7, 542–551 (1990). [CrossRef]
  24. K. G. Larkin, B. F. Oreb, “Design and assessment of symmetrical phase-shifting algorithms,” J. Opt. Soc. Am. A 9, 1740–1748 (1992). [CrossRef]
  25. K. Hibino, B. F. Oreb, D. I. Farrant, K. G. Larkin, “Phase shifting for nonsinusoidal waveforms with phase-shift errors,” J. Opt. Soc. Am. A 12, 761–768 (1995). [CrossRef]
  26. K. Hibino, B. F. Oreb, D. I. Farrant, K. G. Larkin, “Phase-shifting algorithms for spatially nonuniform phase-shifts,” J. Opt. Soc. Am. A 14, 918–930 (1997). [CrossRef]
  27. K. Hibino, “Susceptibility of error-compensating phase-shifting algorithms to random noise,” Appl. Opt. 36, 2084–2093 (1997). [CrossRef] [PubMed]
  28. P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, C. J. Walsh, “300-mm-aperture phase-shifting Fizeau interferometer,” Opt. Eng. 38, 1371–1380 (1999). [CrossRef]
  29. B. F. Oreb, D. I. Farrant, C. J. Walsh, G. Forbes, P. S. Fairman, “Calibration of a 300-mm-aperture phase-shifting Fizeau interferometer,” Appl. Opt. 39, 5161–5171 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited