OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 6 — Feb. 20, 2004
  • pp: 1360–1367

Optical Processing with Vortex-Producing Lenses

Karlton Crabtree, Jeffrey A. Davis, and Ignacio Moreno  »View Author Affiliations


Applied Optics, Vol. 43, Issue 6, pp. 1360-1367 (2004)
http://dx.doi.org/10.1364/AO.43.001360


View Full Text Article

Acrobat PDF (1005 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We discuss two types of optical processing using vortex-producing angular phase plates. In the most common spatial-filtering operation, an input object is Fourier transformed (either by Fraunhofer diffraction or with a lens system). The Fourier transform is then multiplied by an angular phase pattern, and the product is again Fourier transformed. The output is a space-invariant, edge-enhanced version of the input object. Alternatively we can directly image the object using a lens multiplied by the angular phase. The space-variant image is severely distorted along the optical axis of the system. We encode the phase plates onto a liquid-crystal display and present experimental results on both systems.

© 2004 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(100.0100) Image processing : Image processing

Citation
Karlton Crabtree, Jeffrey A. Davis, and Ignacio Moreno, "Optical Processing with Vortex-Producing Lenses," Appl. Opt. 43, 1360-1367 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-6-1360


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Mansuripur and E. M. Wright, “Linear optical vortices,” Opt. Photon News 9, 40–43 (1999).
  2. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London Ser. A 336, 165–190 (1974).
  3. P. Coullet, L. Gil, and F. Rocca, “Optical vortices,” Opt. Commun. 73, 403–408 (1989).
  4. M. Harris, C. A. Hill, and J. M. Vaughan, “Optical helices and spiral interference fringes,” Opt. Commun. 106, 161–166 (1994).
  5. V. Yu, Bazhenov, M. V. Yasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 428–429 (1990).
  6. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992).
  7. Z. Jaroszewicz and A. Kolodziejczyk, “Zone plates performing generalized Hankel transforms and their metrological applications,” Opt. Commun. 102, 391–396 (1993).
  8. J. A. Davis, E. Carcole, and D. M. Cottrell, “Intensity and phase measurements of nondiffracting beams generated with a magneto-optic spatial light modulator,” Appl. Opt. 35, 593–598 (1996).
  9. D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankivic, and T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27, 1351–1353 (2002).
  10. A. G. Peele, P. J. McMahon, D. Paterson, C. Q. Tran, A. P. Mancuso, K. A. Nugent, J. P. Hayes, E. Harvey, B. Lai, and I. McNulty, “Observation of an x-ray vortex,” Opt. Lett. 27, 1752–1754 (2002).
  11. G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Formation of helical beams by use of Pancharatnam-Berry phase optical elements,” Opt. Lett. 27, 1875–1877 (2002).
  12. M. Reicherter, T. Haist, E. U. Wageman, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999).
  13. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
  14. K. T. Gahagan and G. A. Swartzlander, Jr., “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996).
  15. J. A. Davis, L. L. Haavig, and D. M. Cottrell, “Bessel function output from an optical correlator,” Appl. Opt. 36, 2376–2379 (1997).
  16. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Bessel function output from an optical correlator with a phase-only encoded inverse filter,” Appl. Opt. 38, 6709–6713 (1999).
  17. J. A. Davis, D. E. McNamara, and D. M. Cottrell, “Image processing with the radial Hilbert transform: theory and experiments,” Opt. Lett. 25, 99–101 (2000).
  18. G. A. Swartzlander, Jr., “Peering into darkness with a vortex spatial filter,” Opt. Lett. 26, 497–499 (2001).
  19. J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051–1057 (1999).
  20. J. A. Davis, J. Adachi, and D. M. Cottrell, “Diffraction efficiency of nonsynchronously sampled diffraction gratings,” Opt. Eng. 41, 2983–2986 (2002).
  21. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 5.
  22. T. R. Walsh, J. E. Cravatt, B. A. Kast, and M. K. Giles, “A time-sequenced rotation and scale-invariant optical correlator for multiple target recognition,” in Optical Information Processing Systems and Architectures, B. Javidi, ed., Proc. SPIE 1151, 203–219 (1990).
  23. W. T. Rhodes, “Simple procedure for the analysis of coherent imaging systems,” Opt. Lett. 19, 1559–1561 (1994).
  24. D. Palacios, D. Rozas, and G. A. Swartzlander, Jr., “Observed scattering into a dark optical vortex core,” Phys. Rev. Lett. 88, 103902 (2002).
  25. J. A. Davis, E. Carcole, and D. M. Cottrell, “Nondiffracting interference patterns generated with programmable spatial light modulators,” Appl. Opt. 35, 599–602 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited