OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 6 — Feb. 20, 2004
  • pp: 1416–1424

Airborne Lidar Imaging of Salmon

James H. Churnside and James J. Wilson  »View Author Affiliations


Applied Optics, Vol. 43, Issue 6, pp. 1416-1424 (2004)
http://dx.doi.org/10.1364/AO.43.001416


View Full Text Article

Acrobat PDF (3705 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Lidar images of adult salmon are presented. The lidar system is built around a pulsed green laser and a gated intensified CCD camera. The camera gating is timed to collect light scattered from the turbid water below the fish to produce shadows in the images. Image processing increases the estimated contrast-to-noise ratio from 3.4 in the original image to 16.4 by means of a matched filter.

© 2004 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(100.2980) Image processing : Image enhancement
(110.7050) Imaging systems : Turbid media
(280.3640) Remote sensing and sensors : Lidar

Citation
James H. Churnside and James J. Wilson, "Airborne Lidar Imaging of Salmon," Appl. Opt. 43, 1416-1424 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-6-1416


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater imaging system,” Opt. Eng. 32, 2185–2190 (1993).
  2. D.-M. He and G. G. L. Set, “Underwater LIDAR imaging in highly turbid waters,” in Ocean Optics: Remote Sensing and Underwater Imaging, R. J. Frouin and G. D. Gilbert, eds., Proc. SPIE 4488, 71–81 (2001).
  3. B. L. Ulich, P. Lacovara, S. E. Moran, and M. J. DeWeert, “Recent results in imaging lidar,” in Advances in Laser Remote Sensing for Terrestrial and Oceanographic Applications, R. M. Narayanan and J. E. Kalshoven, eds., Proc. SPIE 3059, 95–108 (1997).
  4. N. Cadalli, D. C. Munson, and A. C. Singer, “Bistatic receiver model for airborne lidar returns incident on an imaging array from underwater objects,” Appl. Opt. 41, 3638–3649 (2002).
  5. J. W. McLean, “High-resolution 3-D underwater imaging,” in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE 3761, 10–19 (1999).
  6. S. T. Osofsky, “Characterization of a vertical blurring effect unique to streak tube imaging lidar,” in Ocean Optics: Remote Sensing and Underwater Imaging, R. J. Frouin and G. D. Gilbert, eds., Proc. SPIE 4488, 1–7 (2001).
  7. C. W. Oliver and E. F. Edwards, “Dolphin-safe research program progress report II (1992–1996),” Southwest Fisheries Science Center Admin. Rep. LJ-96–13 (National Marine Fisheries Service Southwest Fisheries Science Center, La Jolla, Calif., 1996), p. 91.
  8. A. J. Griffis, “Demonstration and evaluation of the streak tube imaging LIDAR for use in bycatch reduction,” Saltonstall Kennedy Grant NA77FD0045 Rep. 96-SWR-010 (National Marine Fisheries Service, Southwest Region, Long Beach, Calif, 2000).
  9. E. P. Zege, I. L. Katsev, A. S. Prikhach, and R. N. Keeler, “Comparison of airborne lidar performance when operating in the obscuration and reflection modes,” in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE 3761, 142–153 (1999).
  10. J. W. McLean and J. D. Freeman, “Effects of ocean waves on airborne lidar imaging,” Appl. Opt. 35, 3261–3269 (1996).
  11. M. J. DeWeert, S. E. Moran, B. L. Ulich, and R. N. Keeler, “Numerical simulations of the relative performance of streak-tube, range-gated, and pmt-based airborne imaging lidar systems with realistic sea surfaces,” in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE 3761, 115–129 (1999).
  12. E. P. Zege, I. L. Katsev, A. S. Prikhach, and R. N. Keeler, “Simulating the performance of airborne and in-water laser imaging systems,” in Ocean Optics: Remote Sensing and Underwater Imaging, R. J. Frouin and G. D. Gilbert, eds., Proc. SPIE 4488, 94–105 (2001).
  13. Statistics obtained from http://www.state.ak.us/local/akpages/FISH.GAME/notebook/fish/pink.htm.
  14. Safe Use of Lasers, Standard Z-136.1 (American National Standards Institute, New York, 1993).
  15. H. M. Zorn, J. H. Churnside, and C. W. Oliver, “Laser safety thresholds for cetateans and pinnipeds,” Marine Mammal Sci. 16, 186–200 (2000).
  16. J. H. Churnside, J. J. Wilson, and V. V. Tatarskii, “Lidar profiles of fish schools,” Appl. Opt. 36, 6011–6020 (1997).
  17. J. H. Churnside, J. J. Wilson, and V. V. Tatarskii, “Airborne lidar for fisheries applications,” Opt. Eng. 40, 406–414 (2001).
  18. C. Cox and W. Munk, “Measurements of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954).
  19. J. A. Shaw and J. H. Churnside, “Scanning-laser glint measurements of sea-surface slope statistics,” Appl. Opt. 36, 4202–4213 (1997).
  20. C. D. Mobley, Light and Water (Academic, San Diego, 1994).
  21. R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image analysis using mathematical morphology,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-19, 532–550 (1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited