OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 6 — Feb. 20, 2004
  • pp: 1435–1449

Adaptive-optics performance of Antarctic telescopes

Jon S. Lawrence  »View Author Affiliations

Applied Optics, Vol. 43, Issue 6, pp. 1435-1449 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (255 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The performance of natural guide star adaptive-optics systems for telescopes located on the Antarctic plateau is evaluated and compared with adaptive-optics systems operated with the characteristic mid-latitude atmosphere found at Mauna Kea. A 2-m telescope with tip-tilt correction and an 8-m telescope equipped with a high-order adaptive-optics system are considered. Because of the large isoplanatic angle of the South Pole atmosphere, the anisoplanatic error associated with an adaptive-optics correction is negligible, and the achievable resolution is determined only by the fitting error associated with the number of corrected wave-front modes, which depends on the number of actuators on the deformable mirror. The usable field of view of an adaptive-optics equipped Antarctic telescope is thus orders of magnitude larger than for a similar telescope located at a mid-latitude site; this large field of view obviates the necessity for multiconjugate adaptive-optics systems that use multiple laser guide stars. These results, combined with the low infrared sky backgrounds, indicate that the Antarctic plateau is the best site on Earth at which to perform high-resolution imaging with large telescopes, either over large fields of view or with appreciable sky coverage. Preliminary site-testing results obtained recently from the Dome Concordia station indicate that this site is far superior to even the South Pole.

© 2004 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(350.1260) Other areas of optics : Astronomical optics
(350.1270) Other areas of optics : Astronomy and astrophysics

Original Manuscript: July 1, 2003
Revised Manuscript: October 14, 2003
Published: February 20, 2004

Jon S. Lawrence, "Adaptive-optics performance of Antarctic telescopes," Appl. Opt. 43, 1435-1449 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Rigaut, D. Salmon, R. Arsenault, J. Thomas, O. Lai, D. Rouan, J. P. Veran, P. Gigan, D. Crampton, J. M. Fletcher, J. Stilburn, C. Boyer, P. Jagourel, “Performance of the Canada-France-Hawaii Telescope adaptive optics bonnette,” Publ. Astron. Soc. Pac. 110, 152–164 (1998). [CrossRef]
  2. P. Wizinowich, D. S. Acton, C. Shelton, P. Stomski, J. Gathright, K. Ho, W. Lupton, K. Tsubota, C. Max, J. Brase, J. An, K. Avicola, S. Olivier, D. Gavel, B. Macintosh, A. Chez, J. Larkin, “First light adaptive optics images from the Keck II telescope: a new era of high angular resolution imagery,” Publ. Astron. Soc. Pac. 112, 315–319 (2000). [CrossRef]
  3. J. M. Beckers, “Adaptive optics for astronomy: principles, performance, and applications,” Annu. Rev. Astron. Astrophys. 31, 13–62 (1993). [CrossRef]
  4. R. I. Davies, W. Hackenberg, T. Ott, A. Eckart, S. Rabien, S. Anders, S. Hippler, M. Kasper, P. Kalas, A. Quirrenbach, A. Glindemann, “The science potential of ALFA: adaptive optics with natural and laser guide stars,” Astron. Astrophys. Suppl. Ser. 138, 345–353 (1999). [CrossRef]
  5. J. M. Beckers, “Increasing the size of the isoplanatic patch with multiconjugate adaptive optics,” in Proceedings of the European Southern Observatory Conference on Very Large Telescopes and Their Instrumentation, M. H. Ulrich, ed. (European Southern Observatory, Garching-bei-Muchen, Germany, 1998), pp. 693–703.
  6. R. Avila, J. Vernin, S. Chevas, “Turbulence profile with generalized scidar at San Pedro Martir Observatory and isoplanatic studies,” Publ. Astron. Soc. Pac. 110, 1106–1116 (1998). [CrossRef]
  7. R. D. Marks, J. Vernin, M. Azouit, J. F. Manigault, C. Clevelin, “Measurement of optical seeing on the high Antarctic plateau,” Astron. Astrophys. Suppl. Ser. 134, 161–172 (1999). [CrossRef]
  8. J. Vernin, C. Munon-Tunoz, “Optical site testing campaign at the Nordic Optical Telescope,” Astron. Astrophys. 284, 311–318 (1994).
  9. J. W. V. Storey, M. C. B. Ashley, M. G. Burton, “An automated astrophysical observatory for Antarctica,” Publ. Astron. Soc. Aust. 13, 35–40 (1996).
  10. J. W. V. Storey, “The AASTO program,” in Astrophysics from Antarctica, G. Novak, R. H. Landsberg, eds., Vol. 141 of Astronomical Society of the Pacific Conference Series (Astronomical Society of the Pacific, San Francisco, Calif., 1998), pp. 313–318.
  11. J. S. Lawrence, M. C. B. Ashley, M. G. Burton, P. G. Calisse, J. R. Everett, R. J. Pernic, A. Phillips, J. W. V. Storey, “Operation of the Near Infrared Sky Monitor at the South Pole,” Publ. Astron. Soc. Aust. 19, 328–336 (2001). [CrossRef]
  12. A. Phillips, M. G. Burton, M. C. B. Ashley, J. W. V. Storey, J. P. Lloyd, D. A. Harper, J. Bally, “The near infrared sky emission at the South Pole in winter,” Astrophys. J. 527, 1009–1022 (1999). [CrossRef]
  13. M. G. Hidas, M. G. Burton, M. A. Chamberlain, J. W. V. Storey, “Infrared and submillimetre observing conditions on the Antarctic Plateau,” Publ. Astron. Soc. Aust. 17, 260–269 (2000). [CrossRef]
  14. T. Travouillon, M. C. B. Ashey, M. G. Burton, J. W. V. Storey, R. F. Lowenstein, “Atmospheric turbulence at the South Pole and its implications for astronomy,” Astron. Astrophys. 400, 1163–1172 (2002). [CrossRef]
  15. A. A. Stark, J. Bally, S. P. Balm, T. M. Bania, A. D. Bolatto, R. A. Chamberlain, G. Engargiola, M. Huang, J. G. Ingalls, K. Jacobs, J. M. Jackson, J. W. Kooi, A. P. Lane, K. Y. Lo, R. D. Marks, C. L. Martin, D. Mumma, R. Ojha, R. Scheider, J. Staguhn, J. Stutzki, C. W. Walker, R. W. Wilson, G. A. Wright, Z. Zhang, P. Zimmerman, R. Zimmerman, “The Antarctic submillimetre telescope and remote observatory (AST/RO),” Publ. Astron. Soc. Pac. 113, 567–585 (2001). [CrossRef]
  16. M. Herald, “SPIREX—near infrared astronomy from the South Pole,” Exp. Astron. 3, 87–91 (1994). [CrossRef]
  17. R. D. Marks, “Astronomical seeing from the summits of the Antarctic plateau,” Astron. Astrophys. 385, 328–336 (2002). [CrossRef]
  18. W. J. Wilde, E. J. Kibblewhite, D. A. Haper, “Performance estimates for a near infrared adaptive optics system at the South Pole,” in Astrophysics from Antarctica, G. Novak, R. H. Landsberg, eds., Vol. 141 of Astronomical Society of the Pacific Conference Series (Astronomy Society of the Pacific, San Francisco, Calif., 1998), pp. 303–310.
  19. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966). [CrossRef]
  20. E. Masciadri, J. Vernin, “Optical technique for inner-scale measurement—possible astronomical applications,” Appl. Opt. 36, 1320–1327 (1997). [CrossRef] [PubMed]
  21. T. S. McKechnie, “Atmospheric turbulence and the resolution limits of large ground-based telescopes,” J. Opt. Soc. Am. A 9, 1937–1954 (1992). [CrossRef]
  22. C. E. Coulman, J. Vernin, Y. Coqueugniot, J. L. Caccia, “Outer scale of turbulence appropriate to modeling refractive index structure profiles,” Appl. Opt. 27, 155–160 (1988). [CrossRef] [PubMed]
  23. D. L. Fried, “Statistics of a geometric representation of a wavefront distortion,” J. Opt. Soc. Am. 55, 1427–1435 (1965). [CrossRef]
  24. P. Dierickx, “Optical performance of large ground-based telescopes,” J. Mod. Opt. 39, 569–588 (1992). [CrossRef]
  25. G. Valley, “Isoplanatic degradation of tilt correction and short-term imaging systems,” Appl. Opt. 19, 574–577 (1980). [CrossRef] [PubMed]
  26. R. R. Parenti, R. J. Sasiela, “Laser-guide-star systems for astronomical applications,” J. Opt. Soc. Am. A 11, 288–297 (1994). [CrossRef]
  27. S. S. Olivier, C. E. Max, D. T. Gavel, J. M. Brase, “Tip-tilt compensation: resolution limits for ground-based telescopes using laser guide star adaptive optics,” Astrophys. J. 407, 428–439 (1993). [CrossRef]
  28. B. M. Welsh, C. S. Gardner, “Effects of turbulence induced anisoplanatism on the imaging performance of adaptive-astronomical telescopes using laser guide stars,” J. Opt. Soc. Am. A 8, 69–79 (1991). [CrossRef]
  29. J. L. Bufton, “Comparison of vertical profile turbulence structure with stellar observations,” Appl. Opt. 12, 1785–1793 (1973). [CrossRef] [PubMed]
  30. R. D. Marks, J. Vernin, M. Azouit, J. W. Briggs, M. G. Burton, M. C. B. Ashley, J. F. Manigault, “Antarctic site testing—microthermal measurements of surface-layer seeing at the South Pole,” Astron. Astrophys. Suppl. Ser. 118, 385–390 (1996). [CrossRef]
  31. J. P. Lloyd, B. R. Oppenheimer, J. R. Graham, “The potential of differential astrometric interferometry from the high Antarctic plateau,” Publ. Astron. Soc. Aust. 19, 318–322 (2002). [CrossRef]
  32. T. Travoullion, M. C. B. Ashey, M. G. Burton, J. W. V. Storey, “Seeing measurements at the South Pole using a Hartmann wavefront sensor: ADIMM,” Astron. Astrophys. (to be published).
  33. F. Roddier, “The problematic of adaptive optics design,” in Adaptive Optics for Astronomy, D. M. Alloin, J. M. Mariottieds. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 89–111.
  34. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  35. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990). [CrossRef]
  36. G. Molodij, J. Rayrole, “Performance analysis for THEMIS image stabilizer optical system. II. Anisoplanatism limitations,” Astron. Astrophys. Suppl. Ser. 128, 229–244 (1997). [CrossRef]
  37. P. H. Hu, J. Stone, T. Stanley, “Application of Zernike polynomials to atmospheric propagation problems,” J. Opt. Soc. Am. A 6, 1595–1608 (1989). [CrossRef]
  38. R. Racine, “The telescopic point-spread function,” Publ. Astron. Soc. Pac. 108, 699–705 (1996). [CrossRef]
  39. S. Harder, A. Chelli, “Estimating the point spread function of the adaptive optics system ADONIS using the wavefront sensor measurements,” Astron. Astrophys. Suppl. Ser. 142, 119–135 (2000). [CrossRef]
  40. F. Roddier, M. Northcott, J. E. Graves, “A simple low-order adaptive optics system for near-infrared applications,” Publ. Astron. Soc. Pac. 103, 131–149 (1991). [CrossRef]
  41. S. S. Olivier, D. T. Gavel, “Tip-tilt compensation for astronomical imaging,” J. Opt. Soc. Am. A 11, 368–378 (1994). [CrossRef]
  42. F. Rigaut, E. Gendron, “Laser guide star in adaptive optics: the tilt determination problem,” Astron. Astrophys. 261, 677–684 (1992).
  43. D. P. Greenwood, R. R. Parenti, “Synthetic beacons for atmospheric compensation,” in Adaptive Optics for Astronomy, D. M. Alloin, J. M. Mariotti, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 185–204.
  44. G. A. Tyler, “Bandwidth considerations for tracking through turbulence,” J. Opt. Soc. Am. A 11, 358–367 (1994). [CrossRef]
  45. T. A. ten Brummelaar, “The contribution of high order Zernike modes to wavefront tilt,” Opt. Commun. 115, 417–424 (1995). [CrossRef]
  46. C. W. Allen, Astrophysical Quantities (Athlone, London, 1976).
  47. J. Stone, P. H. Hu, S. P. Mills, S. Ma, “Anisoplanatic effects in finite-aperture optical systems,” J. Opt. Soc. Am. A 11, 347–357 (1994). [CrossRef]
  48. G. Molodij, G. Rousset, “Angular correlation of Zernike polynomials for a laser guide star in adaptive optics,” J. Opt. Soc. Am. A 14, 1949–1965 (1997). [CrossRef]
  49. G. A. Tyler, D. L. Fried, “Image-position error associated with a quadrant detector,” J. Opt. Soc. Am. A 72, 804–809 (1982). [CrossRef]
  50. R. W. Wilson, C. R. Jenkins, “Adaptive optics for astronomy: theoretical performance and limitations,” Mon. Not. R. Astron. Soc. 268, 39–61 (1996). [CrossRef]
  51. D. P. Greenwood, “Bandwidth specification for adaptive optics systems,” J. Opt. Soc. Am. 67, 390–392 (1977). [CrossRef]
  52. P. Wizinowich, W. M. Keck Observatory Adaptive Optics Home Page (2000): htp://www2.keck.hawaii.edu:3636/inst/ao/ao.html .
  53. M. G. Burton, J. W. V. Storey, M. C. B. Ashley, “Science goals for an Antarctic Large Infrared Telescope,” Publ. Astron. Soc. Aust. 18, 158–165 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited