OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 7 — Mar. 1, 2004
  • pp: 1472–1479

Step-height measurement by means of a dual-frequency interferometric confocal microscope

Dejiao Lin, Zhongyao Liu, Rui Zhang, Juqun Yan, Chunyong Yin, and Yi Xu  »View Author Affiliations


Applied Optics, Vol. 43, Issue 7, pp. 1472-1479 (2004)
http://dx.doi.org/10.1364/AO.43.001472


View Full Text Article

Enhanced HTML    Acrobat PDF (145 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel instrument, the dual-frequency interferometric confocal microscope (DICM), which facilitates the measurement of step features, is investigated. It combines the advantages of the high resolution (subnanometer) of heterodyne interferometry and the relatively large measurement range (∼5 μm) of confocal microscopy. The axial response curves of the confocal microscopy system are compared in experiments in which microscopic objects with various numerical apertures and magnifications are used. The results prove that the variation in light intensity is enough to permit discrimination of different orders of interference fringes. The DICM has been successfully utilized to measure the step height of a standard mask, and the experimental results agree well with those measured by scanning probe microscopes. The results also show that the system has good repeatability, with a maximum deviation of 5 nm.

© 2004 Optical Society of America

OCIS Codes
(120.2830) Instrumentation, measurement, and metrology : Height measurements
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(180.1790) Microscopy : Confocal microscopy

History
Original Manuscript: November 10, 2003
Revised Manuscript: November 10, 2003
Published: March 1, 2004

Citation
Dejiao Lin, Zhongyao Liu, Rui Zhang, Juqun Yan, Chunyong Yin, and Yi Xu, "Step-height measurement by means of a dual-frequency interferometric confocal microscope," Appl. Opt. 43, 1472-1479 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-7-1472


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. V. Dusa, L. Karklin, “Edge detection strategies for sub-0.5-um reticle metrology,” Solid State Technol. 9, 101–108 (1995).
  2. D. Kim, S. Kim, H. J. Kong, Y. Lee, “Measurement of the thickness profile of a transparent thin film deposited upon a pattern structure with an acousto-optic tunable filter,” Opt. Lett. 27, 1893–1895 (2002). [CrossRef]
  3. S.-W. Kim, G.-H. Kim, “Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry,” Appl. Opt. 38, 5968–5973 (1999). [CrossRef]
  4. I. K. Ilev, R. W. Waynant, K. R. Byrnes, J. J. Anders, “Dual-confocal fiber-optic method for absolute measurement of refractive index and thickness of optically transparent media,” Opt. Lett. 27, 1693–1695 (2002). [CrossRef]
  5. G. E. Sommargren, “Optical heterodyne profilometry,” Appl. Opt. 20, 610–618 (1981). [CrossRef] [PubMed]
  6. B. Bhushan, J. C. Wyant, C. L. Koliopoulos, “Measurement of surface topography of magnetic tapes by Mirau interferometry,” Appl. Opt. 24, 1489–1497 (1985). [CrossRef] [PubMed]
  7. D. Pantzer, J. Politch, L. Ek, “Heterodyne profiling instrument for the angstrom region,” Appl. Opt. 25, 4168–4172 (1986). [CrossRef] [PubMed]
  8. D. M. Gale, M. I. Pether, J. C. Dainty, “Linnik microscope imaging of integrated circuit structures,” Appl. Opt. 35, 131–148 (1996). [CrossRef] [PubMed]
  9. M. Yokota, A. Asaka, T. Yoshino, “Stabilization improvements of laser-diode closed-loop heterodyne phase-shifting interferometer for surface profile measurement,” Appl. Opt. 42, 1805–1808 (2003). [CrossRef] [PubMed]
  10. E. Wolf, “Significance and measurability of the phase of a spatially coherent optical field,” Opt. Lett. 28, 5–6 (2003). [CrossRef] [PubMed]
  11. K. Creath, “Step height measurement using two-wavelength phase-shifting interferometry,” Appl. Opt. 26, 2810–2816 (1987). [CrossRef] [PubMed]
  12. A. Pförtner, J. Schwider, “Red–green–blue interferometer for the metrology of discontinuous structures,” Appl. Opt. 42, 667–673 (2003). [CrossRef] [PubMed]
  13. T. Fukano, I. Yamaguchi, “Simultaneous measurement of thickness and refractive indices of multiple layers by a low-coherence confocal interference microscope,” Opt. Lett. 21, 1942–1944 (1996). [CrossRef] [PubMed]
  14. I. Abdulhalim, “Method for the measurement of multi-layers refractive indices and thickness using interference microscopes with annular aperture,” Optik 110, 476–478 (1999).
  15. I. Abdulhalim, “Spectroscopic interference microscopy technique for measurement layer parameters,” Meas. Sci. Technol. 12, 1996–2001 (2001). [CrossRef]
  16. M. Gu, Principles of Three Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).
  17. D. K. Hamilton, T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B 27, 211–213 (1982). [CrossRef]
  18. C. J. R. Sheppard, “Three-dimensional phase imaging with the intensity transport equation,” Appl. Opt. 41, 5951–5955 (2002). [CrossRef] [PubMed]
  19. G. Udupa, M. Singaperumal, R. S. Sirohi, M. P. Kothiyal, “Characterization of surface topography by confocal microscopy. I. Principles and the measurement system,” Meas. Sci. Technol. 11, 305–314 (2000). [CrossRef]
  20. C.-H. Lee, J. Wang, “Noninterferometric differential confocal microscopy with 2-nm depth resolution,” Opt. Commun. 135, 233–237 (1999). [CrossRef]
  21. C.-W. Tsai, C.-H. Lee, J. Wang, “Deconvolution of local surface response from topography in nanometer profilometry with a dual-scan method,” Opt. Lett. 24, 1732–1734 (1999). [CrossRef]
  22. C.-Y. Yin, G.-L. Dai, Z.-X. Chao, Y. Xu, J. Xu, “Determining the residual nonlinearity of a high-precision heterodyne interferometer,” Opt. Eng. 38, 1361–1365 (1999). [CrossRef]
  23. L. Singher, A. Brunfeld, J. Shamir, “Ellipsometry with a stabilized Zeeman laser,” Appl. Opt. 29, 2405–2408 (1990). [CrossRef] [PubMed]
  24. T. Wilson, “Confocal microscopy,” in Confocal Microscopy, T. Wilson, ed. (Academic, London, 1990), pp. 389–411.
  25. T. Wilson, “Confocal interference microscopy,” in Confocal Microscopy, T. Wilson, ed. (Academic, London, 1990), pp. 1–60. [CrossRef]
  26. W. Krug, J. Rienitz, G. Schultz, Contributions to Interference Microscopy (Hilger & Watts, London, 1964).
  27. R. L. Jungerman, P. C. D. Hobbs, G. S. Kino, “Phase sensitive scanning optical microscope,” Appl. Phys. Lett. 45, 846–848 (1984). [CrossRef]
  28. Y. Fujii, H. Takimoto, T. Igarashi, “Optimum resolution of laser microscope by using optical heterodyne detection,” Opt. Commun. 38, 85–90 (1981). [CrossRef]
  29. T. Sawatari, “Optical heterodyne scanning microscope,” Appl. Opt. 12, 2768–2772 (1973). [CrossRef] [PubMed]
  30. I. Abdulhalim, “Theory for double beam interferometric microscopes and experimental verification using the Linnik microscope,” J. Mod. Opt. 48, 270–302 (2001).
  31. E. Ingelstam, L. P. Johansson, “Correction due to aperture in transmission interference microscopes,” J. Sci. Instrum. 35, 15–17 (1958). [CrossRef]
  32. G. Schulz, K.-E. Elssner, “Errors in phase-measurement interferometry with high numerical apertures,” Appl. Opt. 30, 4500–4506 (1991). [CrossRef] [PubMed]
  33. D.-J. Lin, J.-Q. Yan, Z.-X. Chao, H. Jiang, C.-Y. Yin, “Phasemeter with external trigger applied for PZT modulated interferometer,” Int. J. Electron. 89, 759–769 (2002). [CrossRef]
  34. V. J. Corcoran, “Directional characteristics in optical heterodyne detection processes,” J. Appl. Phys. 36, 1819–1825 (1965). [CrossRef]
  35. A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1588–1594 (1966). [CrossRef] [PubMed]
  36. Y. Fujii, H. Takimoto, “Imaging properties due to the optical heterodyne and its application to laser microscopy,” Opt. Commun. 18, 45–47 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited