OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 7 — Mar. 1, 2004
  • pp: 1493–1502

Image formation in low-coherence and confocal interference microscopes

Colin J. R. Sheppard, Maitreyee Roy, and Manjula D. Sharma  »View Author Affiliations


Applied Optics, Vol. 43, Issue 7, pp. 1493-1502 (2004)
http://dx.doi.org/10.1364/AO.43.001493


View Full Text Article

Enhanced HTML    Acrobat PDF (159 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Image formation in the coherence probe microscope (CPM) and in optical coherence tomography (OCT) are compared. These systems differ in that CPM is a conventional interference microscope, but OCT is a confocal interference microscope. A major disadvantage of CPM for imaging through thick object structures is that there is no optical sectioning for the background image, which can saturate the detector. The behavior of the interference term in the presence of aberrations also exhibits some differences: Aberrations can be compensated in CPM, but not in OCT.

© 2004 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.1790) Medical optics and biotechnology : Confocal microscopy
(180.3170) Microscopy : Interference microscopy
(180.6900) Microscopy : Three-dimensional microscopy

History
Original Manuscript: April 28, 2003
Revised Manuscript: October 6, 2003
Published: March 1, 2004

Citation
Colin J. R. Sheppard, Maitreyee Roy, and Manjula D. Sharma, "Image formation in low-coherence and confocal interference microscopes," Appl. Opt. 43, 1493-1502 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-7-1493


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Balusabramian, “Optical system for surface topography measurement,” U.S. Patent no. 4,340,306 (20July1982).
  2. B. L. Danielson, C. D. Whittenberg, “Guided-wave reflectometry with micrometer resolution,” Appl. Opt. 26, 2836–2842 (1987). [CrossRef] [PubMed]
  3. M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987). [CrossRef]
  4. B. S. Lee, T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29, 3784–3788 (1990). [CrossRef] [PubMed]
  5. S. S. C. Chim, G. S. Kino, “Mirau correlation microscope,” Opt. Lett. 15, 579–581 (1990). [CrossRef] [PubMed]
  6. B. L. Danielson, C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30, 2975–2979 (1991). [CrossRef] [PubMed]
  7. S. S. C. Chim, G. S. Kino, “Three-dimensional realization in interference microscopy,” Appl. Opt. 31, 2550–2553 (1992). [CrossRef] [PubMed]
  8. T. Dresel, G. Häusler, H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992). [CrossRef] [PubMed]
  9. S. Chen, A. W. Palmer, K. T. V. Grattan, B. T. Meggitt, “Digital signal-processing techniques for electronically scanned optical-fiber white-light interferometry,” Appl. Opt. 31, 6003–6010 (1992). [CrossRef] [PubMed]
  10. Y. J. Rao, Y. N. Ning, D. A. Jackson, “Synthesized source for white-light sensing systems,” Opt. Lett. 18, 462–464 (1993). [CrossRef] [PubMed]
  11. P. J. Caber, “Interferometric profiler for rough surfaces,” Appl. Opt. 32, 3438–3441 (1993). [CrossRef] [PubMed]
  12. P. de Groot, L. Deck, “Three-dimensional imaging by sub-Nyquist sampling of white-light interferograms,” Opt. Lett. 18, 1462–1464 (1993). [CrossRef] [PubMed]
  13. L. Deck, P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994). [CrossRef] [PubMed]
  14. M. V. Plissi, A. L. Rogers, D. J. Brassington, M. G. F. Wilson, “Low-coherence interferometric system utilizing an integrated optical configuration,” Appl. Opt. 34, 4735–4739 (1995). [CrossRef] [PubMed]
  15. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  16. J. Schmitt, A. Knüttel, R. F. Bonner, “Measurement of optical properties of biological tissue by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993). [CrossRef] [PubMed]
  17. V. J. Corcoran, “Directional characteristics in optical heterodyne detection processes,” J. Appl. Phys. 36, 1819–1825 (1965). [CrossRef]
  18. A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1588–1594 (1966). [CrossRef] [PubMed]
  19. Y. Fujii, H. Takimoto, “Imaging properties due to the optical heterodyne and its application to laser microscopy,” Opt. Commun. 18, 45–47 (1976). [CrossRef]
  20. T. Sawatari, “Optical heterodyne scanning microscope,” Appl. Opt. 12, 2768–2772 (1973). [CrossRef] [PubMed]
  21. M. Kempe, W. Rudolf, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A 13, 46–52 (1996). [CrossRef]
  22. P. Hariharan, “The Sénarmont compensator: an early application of the geometric phase,” J. Mod. Opt. 4, 2061–2064 (1993). [CrossRef]
  23. M. Roy, P. Hariharan, “White-light geometric phase interferometer for surface profiling,” in Interferometry VII: Techniques and Analysis, M. Kujawinska, R. J. Pryputniewiez, M. Takeda, eds., Proc. SPIE2544, 64–72 (1995). [CrossRef]
  24. M. Roy, C. J. R. Sheppard, “Geometric phase-shifting for low-coherence interference microscopy,” Opt. Lasers Eng. 37, 631–641 (2002). [CrossRef]
  25. C. J. R. Sheppard, M. Roy, “Low-coherence interference microscopy,” in Optical Imaging and Microscopy, P. Török, F.-J. Kao, eds. (Springer, Berlin, Germany, 2003), pp. 257–274. [CrossRef]
  26. M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt. 34, 1401–1407 (1987). [CrossRef]
  27. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994). [CrossRef] [PubMed]
  28. Y. Fujii, Y. Yamazaki, “A fiber-optic 3D microscope,” J. Microsc. (Oxford) 158, 145–152 (1990). [CrossRef]
  29. L. Giniunas, R. Juskaitis, S. V. Shatalin, “Scanning fiber-optic microscope,” Electron. Lett. 27, 724–726 (1991). [CrossRef]
  30. T. Dabbs, M. Glass, “Single-mode fibers used as confocal microscope pinholes,” Appl. Opt. 31, 705–706 (1992). [CrossRef] [PubMed]
  31. M. Gu, C. J. R. Sheppard, X. Gan, “Image formation in a fiber-optical confocal scanning microscope,” J. Opt. Soc. Am. A 8, 1755–1761 (1991). [CrossRef]
  32. M. Gu, C. J. R. Sheppard, “Signal level of the fiber optical confocal scanning microscope,” J. Mod. Opt. 38, 1621–1630 (1991). [CrossRef]
  33. D. K. Hamilton, C. J. R. Sheppard, “A confocal interference microscope,” Opt. Acta 29, 1573–1577 (1982). [CrossRef]
  34. M. Gu, C. J. R. Sheppard, “Fiber-optical confocal scanning interference microscopy,” Opt. Commun. 100, 79–86 (1993). [CrossRef]
  35. M. Gu, C. J. R. Sheppard, “Experimental investigation of fiber-optical confocal scanning microscopy, including a comparison with pinhole detection,” Micron 24, 557–565 (1993). [CrossRef]
  36. H. Zhou, M. Gu, C. J. R. Sheppard, “A compact confocal interference microscope based on a four-port single-mode fiber coupler,” Optik (Stuttgart) 103, 45–48 (1996).
  37. C. J. R. Sheppard, T. Wilson, “Effects of high angles of convergence on V(z) in the scanning acoustic microscope,” Appl. Phys. Lett. 38, 858–859 (1981). [CrossRef]
  38. D. Gale, M. I. Pether, J. C. Dainty, “Linnik microscope imaging of integrated circuit structures,” Appl. Opt. 35, 131–148 (1996). [CrossRef] [PubMed]
  39. H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. London Ser. A 217, 408–432 (1953). [CrossRef]
  40. K. Yamamoto, Y. Ichioka, T. Suzuki, “Influence of light coherence at the exit pupil of the condenser on the image formation,” Opt. Acta 23, 987–996 (1976). [CrossRef]
  41. C. J. R. Sheppard, A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051–1073 (1977). [CrossRef]
  42. C. J. R. Sheppard, T. Wilson, “Image formation in scanning microscopes with partially coherent source and detector,” Opt. Acta 25, 315–325 (1978). [CrossRef]
  43. C. J. R. Sheppard, T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. (Oxford) 124, 107–117 (1981). [CrossRef]
  44. C. J. R. Sheppard, T. Wilson, “Fourier imaging of phase information in conventional and scanning microscopes,” Proc. R. Soc. London Ser. A 295, 513–536 (1980).
  45. M. Kempe, A. Z. Genack, W. Rudolph, P. Dorn, “Ballistic and diffuse light detection in confocal and heterodyne imaging systems,” J. Opt. Soc. Am. A 14, 216–223 (1997). [CrossRef]
  46. H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London Ser. A 231, 91–103 (1955). [CrossRef]
  47. C. J. R. Sheppard, D. K. Hamilton, I. J. Cox, “Optical microscopy with extended depth of field,” Proc. R. Soc. London Ser. A 387, 171–186 (1983). [CrossRef]
  48. C. J. R. Sheppard, “The spatial frequency cut-off in three dimensional imaging II,” Optik (Stuttgart) 74, 128–129 (1986).
  49. C. J. R. Sheppard, M. Gu, Y. Kawata, S. Kawata, “Three-dimensional transfer functions for high aperture systems,” J. Opt. Soc. Am. A 11, 593–598 (1994). [CrossRef]
  50. M. Gu, C. J. R. Sheppard, “Three-dimensional partially-coherent image formation in confocal microscopes with a finite-sized detector,” J. Mod. Opt. 41, 1701–1715 (1994). [CrossRef]
  51. J. Quartel, C. J. R. Sheppard, “A surface reconstruction algorithm based on confocal interferometric profiling,” J. Mod. Opt. 43, 591–605 (1996). [CrossRef]
  52. M. Gu, X. Gan, C. J. R. Sheppard, “Three-dimensional coherent transfer functions in fiber optical confocal scanning microscopes,” J. Opt. Soc. Am. A 8, 1019–1025 (1991). [CrossRef]
  53. C. J. R. Sheppard, H. Zhou, “Confocal interference microscopy,” in Three-Dimensional Microscopy: Image Acquisition and Processing IV, C. J. Cogswell, J.-A. Conchello, T. Wilson, eds., Proc. SPIE2984, 85–89 (1997). [CrossRef]
  54. R. Gauderon, C. J. R. Sheppard, “Signal level in a confocal scanning microscope using step-index optical fibers,” J. Mod. Opt. 45, 529–537 (1998). [CrossRef]
  55. M. D. Sharma, C. J. R. Sheppard, “Axial resolution in the fiber-optical confocal microscope,” Bioimaging 6, 98–103 (1998). [CrossRef]
  56. M. D. Sharma, C. J. R. Sheppard, “Effects of system geometry on the axial response of the fiber-optical confocal microscope,” J. Mod. Opt. 46, 605–621 (1999).
  57. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969). [CrossRef]
  58. C. J. R. Sheppard, M. Gu, X. Q. Mao, “Three-dimensional coherent transfer function in a reflection-mode confocal scanning microscope,” Opt. Commun. 81, 281–284 (1991). [CrossRef]
  59. C. J. R. Sheppard, C. J. Cogswell, “Three-dimensional image formation in confocal microscopy,” J. Microsc. (Oxford) 159, 179–194 (1990). [CrossRef]
  60. C. J. R. Sheppard, M. Gu, “Three-dimensional transfer functions in confocal scanning microscopy,” in Visualization in Biomedical Microscopies, A. Kriete, ed. (VCH, Weinheim, Germany, 1992), pp. 251–282.
  61. M. Gu, C. J. R. Sheppard, “Three-dimensional image formation in confocal scanning microscopy under ultra-short laser-pulse illumination,” J. Mod. Opt. 42, 747–762 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited