OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 7 — Mar. 1, 2004
  • pp: 1508–1514

Transmission of Visible Light Through Oxidized Copper Films: Feasibility of Using a Spectral Projected Gradient Method

Arturo Ramírez-Porras and William E. Vargas-Castro  »View Author Affiliations


Applied Optics, Vol. 43, Issue 7, pp. 1508-1514 (2004)
http://dx.doi.org/10.1364/AO.43.001508


View Full Text Article

Acrobat PDF (135 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Transmittance measurements at normal incidence were carried out over the visible spectral range for metallic thin films deposited by electron beam evaporation on thick glass substrates. The presence of an inhomogeneous thin layer of Cu2O covering the deposited Cu films is required for a satisfactory model of the measurements taken from various samples with increasing thickness. A spectral projected gradient method is used to invert the transmission spectra from which the wavelength dependence of the effective dielectric function of the oxidized coating layer is obtained. Then an effective medium model is used to estimate the volume fraction of internal voids randomly distributed through the surface layer.

© 2004 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(240.0310) Optics at surfaces : Thin films
(240.6700) Optics at surfaces : Surfaces
(310.6860) Thin films : Thin films, optical properties

Citation
Arturo Ramírez-Porras and William E. Vargas-Castro, "Transmission of Visible Light Through Oxidized Copper Films: Feasibility of Using a Spectral Projected Gradient Method," Appl. Opt. 43, 1508-1514 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-7-1508


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Tousey, “On calculating the optical constants from reflection coefficients,” J. Opt. Soc. Am. 29, 235–239 (1939).
  2. J. M. Bennett and M. J. Booty, “Computational method for determining n and k for a thin film from the measured reflectance, transmittance, and film thickness,” Appl. Opt. 5, 41–43 (1965).
  3. J. Rodríguez, M. Gómez, J. Ederth, G. A. Niklasson, and C. G. Granqvist, “Thickness dependence of the optical properties of sputter deposited Ti oxide films,” Thin Solid Films 365, 119–125 (2000).
  4. T. Babeva, S. Kitova, and I. Konstantinov, “Photometric methods for determining the optical constants and the thicknesses of thin absorbing films: selection of a combination of photometric quantities on the basis of error analysis,” Appl. Opt. 40, 2675–2681 (2001).
  5. T. Babeva, S. Kitova, and I. Konstantinov, “Photometric methods for determining the optical constants and the thicknesses of thin absorbing films: criteria for precise and unambiguous determination of n, k, and d in a wide spectral range,” App. Opt. 40, 2682–2686 (2001).
  6. P. J. Martin, “Ion-based methods for optical thin film deposition: a review,” J. Mater. Sci. 21, 1–25 (1986).
  7. M. Veszelei, M. Strömme-Mattsson, L. Kullman, A. Azens, and C. G. Granqvist, “Zr-Ce oxides as candidates for optically passive counter electrodes,” Solar Energy Mater. Solar Cells 56, 223–230 (1999).
  8. D. E. Azofeifa, N. Clark, A. Amador, and A. Sáenz, “Determination of hydrogen absorption in Pd coated Al thin films,” Thin Solid Films 300, 295–298 (1997).
  9. T. Matsumoto, R. A. Bennett, P. Stone, T. Yamada, K. Domen, and M. Bowker, “Scanning tunneling microscopy studies of oxygen adsorption on Cu(111),” Surf. Sci. 471, 225–245 (2001).
  10. V. Agarwal, J. E. Lugo, and J. A. del Rio, “Reversible charging effects on optical properties of porous silicon,” Solid State Commun. 120, 21–24 (2001).
  11. I. Chambouleyron, J. M. Martínez, A. C. Moretti, and M. Mulato, “Retrieval of optical constants and thickness of thin films from transmission spectra,” Appl. Opt. 36, 8238–8247 (1997).
  12. W. E. Vargas, D. E. Azofeifa, and N. Clark, “Retrieved optical properties of thin films on absorbing substrates from transmittance measurements by application of a spectral projected gradient method,” Thin Solid Films 425, 1–8 (2003).
  13. T. Babeva, S. Kitova, B. Mednikarov, and I. Konstantinov, “Preparation and characterization of a reference aluminum mirror,” Appl. Opt. 41, 3840–3846 (2002).
  14. F. Curiel, W. E. Vargas, and R. G. Barrera, “Visible spectral dependence of the scattering and absorption coefficients of pigmented coatings from inversion of diffuse reflectance spectra,” Appl. Opt. 41, 5969–5978 (2002).
  15. A. Ramírez-Porras, E. D. Avendaño-Soto, and J. A. Araya-Pochet, “Design and characterization of a high vacuum metals deposition system based on electron beam evaporation,” in Surface Science and its Applications, Proceedings of the 9th Latin American Congress, O. de Melo and I. Hernández-Calderón, eds. (World Scientific, Singapore, 1999), pp. 420–422.
  16. M. Athans, M. L. Dertouzos, R. N. Spann, and S. J. Mason, Systems, Networks, and Computations: Multivariable Methods (McGraw-Hill, New York, 1974).
  17. M. Raydan, “The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem,” SIAM J. Optim. 7, 26–33 (1997).
  18. J. Barzilai and J. M. Borwein, “Two point step size gradient methods,” IMA J. Numer. Anal. 8, 141–148 (1988).
  19. L. Grippo, F. Lampariello, and S. Lucidi, “A nonmonotone line search technique for Newton’s method,” SIAM J. Numer. Anal. 23, 707–716 (1986).
  20. E. G. Birgin, J. M. Martinez, and M. Raydan, “Nonmonotone spectral projected gradient methods on convex sets,” SIAM J. Optim. 10, 1196–1211 (2000).
  21. E. G. Birgin, I. Chambouleyron, and J. M. Martínez, “Estimation of the optical constants and the thickness of thin films using unconstrained optimization,” J. Comp. Phys. 151, 862–880 (1999).
  22. A. D. Rakic, J. M. Elazar, and A. B. Djurisic, “Acceptance-probability-controlled simulated annealing: a method for modeling the optical constants of solids,” Phys. Rev. E 52, 6862–6867 (1995).
  23. A. B. Djurisic, A. D. Rakic, and J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with an adaptive move generation procedure,” Phys. Rev. E 55, 4797–4803 (1997).
  24. C. G. Ribbing and A. Roos, “Copper oxides (Cu2O, CuO),” in Handbook of Optical Constants, E. D. Palik, ed. (Academic, New York, 1991), pp. 875–882.
  25. B. R. Cooper and H. Ehrenreich, “Optical properties of noble metals. II,” Phys. Rev. 138, 494–507 (1965).
  26. N. Hartmann and R. J. Madix, “Growth and ordering of Cu-O islands during oxygen adsorption on Cu(110) at 470 K,” Surf. Sci. 488, 107–122 (2001).
  27. I. Chambouleyron, S. D. Ventura, E. G. Birgin, and J. M. Martínez, “Optical constants and thickness determination of very thin amorphous semiconductor films,” J. Appl. Phys. 92, 3093–3102 (2002).
  28. C. Y. Fong, “Wavelength modulation spectrum of copper,” Phys. Rev. Lett. 25, 1486–1490 (1970).
  29. A. R. Williams, J. F. Janak, and V. L. Moruzzi, “One-electron analysis of optical data in copper,” Phys. Rev. Lett. 28, 671–675 (1972).
  30. J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385–420 (1904).
  31. G. A. Niklasson and C. G. Granqvist, “Optical properties and solar selectivity of coevaporated Co-Al2O3 composite films,” J. Appl. Phys. 55, 3382–3410 (1984).
  32. B. Lewis and J. C. Anderson, Nucleation and Growth of Thin Films (Academic, New York, 1978).
  33. P. Yu and M. Cardona, Fundamentals of Semiconductors (Springer-Verlag, Berlin, 1996).
  34. P. V. Adamson, “Differential reflection spectroscopy of surface layers on thick transparent substrates with normally incident light,” Opt. Spectrosc. 80, 459–468 (1996).
  35. E. N. Kotlikov and G. V. Tereshchenko, “Study of optical constants of films used for the synthesis of broad-band antireflection coatings,” Opt. Spectrosc. 82, 603–609 (1997).
  36. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1222 (1983).
  37. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1991).
  38. H. A. Macleod, Thin-Film Optical Filters (Adam Hilger, London, 1969).
  39. H. M. Liddell, Computer-Aided Techniques for the Design of Multilayer Filters (Adam Hilger, Bristol, 1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited