OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 7 — Mar. 1, 2004
  • pp: 1515–1521

Linear Dichroism of the Cornea

Valérie Louis-Dorr, Karim Naoun, Paul Allé, Anne-Marie Benoit, and Antoine Raspiller  »View Author Affiliations


Applied Optics, Vol. 43, Issue 7, pp. 1515-1521 (2004)
http://dx.doi.org/10.1364/AO.43.001515


View Full Text Article

Acrobat PDF (220 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dichroic properties of in vitro sheep corneas were studied with a spectrophotometer in transmission mode for several angles of incidence of light beams. Several models of corneal anisotropy have been presented in the literature. The results presented here allow us to believe that the cornea behaves as a dichroic biaxial crystal. Furthermore, this dichroism is weak when the angle of incidence on the corneal surface stays small. The mathematical model that describes these optical properties of the cornea uses Mueller matrices.

© 2004 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.4470) Medical optics and biotechnology : Ophthalmology
(260.5430) Physical optics : Polarization

Citation
Valérie Louis-Dorr, Karim Naoun, Paul Allé, Anne-Marie Benoit, and Antoine Raspiller, "Linear Dichroism of the Cornea," Appl. Opt. 43, 1515-1521 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-7-1515


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. N. Weinreb, C. Bowd, and L. M. Zangwill, “Glaucoma detection using scanning laser polarimetry with variable corneal polarization compensation,” Arch. Ophthalmol. 121, 218–224 (2003).
  2. N. T. Choplin, Q. Zhou, and R. W. Knighton, “Effect of individualized compensation for anterior segment birefringence on retinal nerve fiber layer assessments as determined by scanning laser polarimetry,” Ophthalmology 110, 719–725 (2003).
  3. J. M. Bueno and F. Vargas-Martin, “Measurement of the corneal birefringence with a liquid crystal imaging polariscope,” Appl. Opt. 41, 116–124 (2002).
  4. D. S. Greenfield and R. W. Knighton, “Correction for corneal polarization axis improves the discriminating power of scanning laser polarimetry,” Am. J. Ophthalmol. 134, 27–33 (2002).
  5. R. W. Knighton and X. R. Huang, “Linear birefringence of the central human cornea,” Invest. Ophthalmol. Vis. Sci. 43, 82–86 (2002).
  6. J. M. Bueno, “Measurement of parameters of the polarization in the living human eye using imaging polarimetry,” Vision Res. 40, 3791–3799 (2000).
  7. D. S. Greenfield and R. W. Knighton, “Effect of corneal polarization axis on the assessment of the retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol. 129, 715–722 (2000).
  8. A. M. Benoit, K. Naoun, V. Louis-Dorr, L. Mala, and A. Raspiller, “Linear dichroism of the retinal nerve fiber layer expressed with Mueller matrices,” Appl. Opt. 40, 565–569 (2001).
  9. G. J. Van Blockland, “The optics of the human eye studied with respect to polarized light,” Ph.D. dissertation (University of Utrecht, Utrecht, The Netherlands, 1986).
  10. J. M. Bueno and J. Jaronski, “Spatially resolved polarization properties for in vitro corneas,” Ophthalmic Physiol. Opt. 21, 384–392 (2001).
  11. L. J. Bour, “Polarized light and eye,” in Visual Optics and Instrumentation (CRC Press, Boca Raton, Fla., 1991), Vol. 1.
  12. A. Stanworth and E. J. Naylor, “Polarized light studies of the cornea,” J. Exp. Biol. 30, 160–169 (1953).
  13. A. Stanworth and E. J. Naylor, “The polarization optics of the isolated cornea,” Brit. J. Ophthalmol. 34, 201–211 (1950).
  14. L. J. Bour and N. J. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21, 1413–1421 (1981).
  15. G. J. Van Blockland and S. C. Verhelst, “Corneal polarization in the living human eye explained with a biaxial model,” J. Opt. Soc. Am. A 4, 82–90 (1987).
  16. E. E. Wahlstrom, Optical Crystallography (Wiley, New York, 1949).
  17. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1965).
  18. R. P. Hemenger, “Dichroism of the macula pigment and Haidinger’s brushes,” J. Opt. Soc. Am. 72, 734–737 (1982).
  19. R. A. Bone and J. T. Landrum, “Macular pigment in Henle fiber membranes: a model for Haidinger’s brushes,” Vision Res. 24, 103–108 (1984).
  20. H. Mueller, “The foundations of optics,” J. Opt. Soc. Am. 38, 661 (1948).
  21. D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol. 136, 263–286 (1957).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited