OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 7 — Mar. 1, 2004
  • pp: 1533–1551

Volume Holographic Imaging in Transmission Geometry

Arnab Sinha, Wenyang Sun, Tina Shih, and George Barbastathis  »View Author Affiliations


Applied Optics, Vol. 43, Issue 7, pp. 1533-1551 (2004)
http://dx.doi.org/10.1364/AO.43.001533


View Full Text Article

Acrobat PDF (880 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We address the performance of transmission geometry volume holograms as depth-selective imaging elements. We consider two simple implementations using holograms recorded with spherical and plane beams. We derive the point-spread function (PSF) of these systems using volume diffraction theory and use the PSF to estimate depth resolution. Furthermore, we show that appropriately designed objective optics can significantly improve the depth resolution or the working distance of plane-wave reference holographic imaging systems. These results are confirmed experimentally and demonstrated for objects with millimeter axial features, imaged from the 5- to 50-cm range.

© 2004 Optical Society of America

OCIS Codes
(090.7330) Holography : Volume gratings
(110.0110) Imaging systems : Imaging systems
(110.6770) Imaging systems : Telescopes

Citation
Arnab Sinha, Wenyang Sun, Tina Shih, and George Barbastathis, "Volume Holographic Imaging in Transmission Geometry," Appl. Opt. 43, 1533-1551 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-7-1533


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393–400 (1963).
  2. C. J. R. Sheppard and C. J. Cogswell, “Three-dimensional imaging in confocal microscopy,” in Confocal Microscopy, T. Wilson, ed. (Academic, San Diego, Calif., 1990), Chap. 4, pp. 143–169.
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
  4. P. Grangeat, “Mathematical framework of cone beam 3D reconstruction via the first derivative of the radon transform,” in Lecture Notes in Mathematics, Vol. 1497 of Mathematical Methods in Tomography, G. T. Herman, A. K. Louis, and F. Natterer, eds. (Springer-Verlag, Berlin, 1990).
  5. D. Marr, Vision (Freeman, New York, 1982).
  6. M. Minsky, “Microscopy apparatus,” U.S. patent 3,013,467 (19 December 1961).
  7. G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
  8. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “7 × 7 reconstruction on Si(111) resolved in real space,” Phys. Rev. Lett. 50, 120–123 (1983).
  9. D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–779 (1948).
  10. E. Leith and J. Upatnieks, “Wavefront reconstruction and communication theory,” J. Opt. Soc. Am. 52, 1123–1134 (1962).
  11. J. Zhang, B. Tao, and J. Katz, “Three-dimensional velocity measurements using hybrid HPIV,” in Developments in Laser Techniques and Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, and J. H. Whitelaw, eds. (Springer, Berlin, Germany, 1997).
  12. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998).
  13. J. H. Milgram and W. Li, “Computational reconstruction of images from holograms,” Appl. Opt. 41, 853–864 (2002).
  14. A. Sinha, W. Sun, T. Shih, and G. Barbastathis, “N-ocular holographic 3d imaging,” in Proceedings of the OSA Annual Meeting (Optical Society of America, Washington, D.C., 2002), paper WD7.
  15. E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303–1311 (1966).
  16. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  17. D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
  18. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
  19. H. Lee, X.-G. Gu, and D. Psaltis, “Volume holographic interconnections with maximal capacity and minimal cross talk,” J. Appl. Phys. 65, 2191–2194 (1989).
  20. D. Brady, S. Lin, X. G. Gu, and D. Psaltis, “Holography in artificial neural networks,” Nature (London) 343, 325–330 (1990).
  21. G. Barbastathis and D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE 87, 2098–2120 (1999).
  22. G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811–813 (1999).
  23. A. Sinha and G. Barbastathis, “Volume holographic telescope,” Opt. Lett. 27, 1690–1692 (2002).
  24. W. Liu, D. Psaltis, and G. Barbastathis, “Real-time spectral imaging in three spatial dimensions,” Opt. Lett. 27, 854–856 (2002).
  25. H. Coufal, D. Psaltis, and G. Sincerbox, eds., Holographic Data Storage (Springer, New York, 2000).
  26. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
  27. G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403–2417 (1996).
  28. G. Barbastathis and D. Psaltis, “Shift-multiplexed holographic memory using the two-lambda method,” Opt. Lett. 21, 432–434 (1996).
  29. D. Psaltis, F. Mok, and H. Y.-S. Li, “Nonvolatile storage in photorefractive crystals,” Opt. Lett. 19, 210–212 (1994).
  30. M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, Cambridge, U.K., 1998).
  31. H. Fisk-Johnson, “An improved method for computing a discrete Hankel transform,” Comput. Phys. Commun. 43, 181–202 (1987).
  32. G. Barbastathis and A. Sinha, “Information content of volume holographic imaging,” Trends Biotechnol. 19, 383–392 (2001).
  33. A. Stein and G. Barbastathis, “Axial imaging necessitates loss of lateral shift invariance,” Appl. Opt. 41, 6055–6061 (2002).
  34. M. Subbarao and S. Gopal, “Depth from defocus: a spatial domain approach,” Intl. J. Comput. Vision 13, 271–294 (1994).
  35. T. Wilson, ed., Confocal Microscopy (Academic, San Diego, Calif., 1990).
  36. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  37. M. V. Klein and T. E. Furtak, Optics (Wiley, New York, 1986).
  38. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited