OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 7 — Mar. 1, 2004
  • pp: 1570–1576

Birefringent omnidirectional reflector

Kate Kaminska and Kevin Robbie  »View Author Affiliations

Applied Optics, Vol. 43, Issue 7, pp. 1570-1576 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (340 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Anisotropic optical coatings offer unique polarizing properties, unmatched by conventional isotropic devices. Here we demonstrate the fabrication of a birefringent omnidirectional reflector, a type of photonic crystal, which exhibits complete reflection of radiation at 1.1 μm for all incidence angles and polarizations. The thin-film device was deposited from electron-beam evaporated silicon, with refractive-index variation arising from atomic-scale porosity created with glancing-angle deposition. Birefringence was found to enhance the performance of the device compared with its isotropic counterpart by enlarging the photonic bandgap region of omnidirectional reflection.

© 2004 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(230.1480) Optical devices : Bragg reflectors
(230.4170) Optical devices : Multilayers
(310.1860) Thin films : Deposition and fabrication
(310.6860) Thin films : Thin films, optical properties

Original Manuscript: August 5, 2003
Revised Manuscript: November 17, 2003
Published: March 1, 2004

Kate Kaminska and Kevin Robbie, "Birefringent omnidirectional reflector," Appl. Opt. 43, 1570-1576 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998). [CrossRef] [PubMed]
  2. J. N. Winn, Y. Fink, S. Fan, J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573–1575 (1998). [CrossRef]
  3. D. N. Chigrin, A. V. Lavrienko, D. A. Yarotsky, S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999). [CrossRef]
  4. M. Deopura, C. K. Ullal, B. Temelkuran, Y. Fink, “Dielectric omnidirectional visible reflector,” Opt. Lett. 26, 1197–1199 (2001). [CrossRef]
  5. B. Gallas, S. Fisson, E. Charron, A. Brunet-Bruneau, G. Vuye, J. Rivory, “Making an omnidirectional reflector,” Appl. Opt. 40, 5056–5063 (2001). [CrossRef]
  6. Y. Park, Y. Roh, C. Cho, H. Jeon, M. G. Sung, J. C. Woo, “GaAs-based near infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003). [CrossRef]
  7. K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculpted thin films,” Nature 384, 616–616 (1996). [CrossRef]
  8. K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, N. J. McMullin, “Inhomogeneous thin film optical filters fabricated using glancing angle deposition,” Electron. Lett. 33, 1213–1214 (1997). [CrossRef]
  9. K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997). [CrossRef]
  10. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991). [CrossRef]
  11. W. H. Southwell, “Omnidirectional mirror design with quarter-wave dielectric stacks,” Appl. Opt. 38, 5464–5467 (1999). [CrossRef]
  12. S. Kim, C. K. Hwangbo, “Design of omnidirectional high reflectors with quarter-wave dielectric stacks for optical telecommunication bands,” Appl. Opt. 41, 3187–3192 (2002). [CrossRef] [PubMed]
  13. X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002). [CrossRef]
  14. S. Bosch, J. Ferre-Borrull, N. Leinfellner, A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453, 9–17 (2000). [CrossRef]
  15. R. Messier, V. C. Venugopal, P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000). [CrossRef]
  16. L. Abelmann, C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997). [CrossRef]
  17. I. J. Hodgkinson, Q. Hong Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1997). [CrossRef]
  18. K. Robbie, C. Shafai, M. J. Brett, “Thin films with nanometer-scale pillar microstructure,” J. Mater. Res. 14, 3158–3163 (1999). [CrossRef]
  19. K. Kaminska, T. Brown, G. Beydaghyan, K. Robbie, “Vacuum evaporated porous silicon photonic interference filters,” Appl. Opt. 42, 4212–4219 (2003). [CrossRef] [PubMed]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  21. I. J. Hodgkinson, S. Kassam, Q. H. Wu, “Eigenequations and compact algorithms for bulk and layered anisotropic optical media: reflection and refraction at a crystal-crystal interface,” J. Comput. Phys. 133, 75–83 (1997). [CrossRef]
  22. D. W. Berreman, “Optics in stratified and anisotropic media: 4 × 4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972). [CrossRef]
  23. E. Cojocaru, “Omnidirectional reflection from Šolc-type anisotropic periodic dielectric structures,” Appl. Opt. 39, 6441–6447 (2000). [CrossRef]
  24. E. Cojocaru, “Omnidirectional reflection from finite periodic and Fibonacci quasi-periodic multilayers of alternating isotropic and birefringent thin films,” Appl. Opt. 41, 747–754 (2002). [CrossRef] [PubMed]
  25. K. Robbie, D. J. Broer, M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399, 764–766 (1999). [CrossRef]
  26. P. A. Snow, E. K. Squire, P. St. J. Russell, L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999). [CrossRef]
  27. O. Toader, S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic bandgap crystals,” Science 292, 1133–1135 (2001). [CrossRef] [PubMed]
  28. O. Toader, S. John, “Square spiral photonic crystals: robust architecture for microfabrication of materials with large three-dimensional photonic bandgaps,” Phys. Rev. E 66, 016610/1–18 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited