OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 7 — Mar. 1, 2004
  • pp: 1589–1602

Scattering optics of snow

Alexander A. Kokhanovsky and Eleonora P. Zege  »View Author Affiliations


Applied Optics, Vol. 43, Issue 7, pp. 1589-1602 (2004)
http://dx.doi.org/10.1364/AO.43.001589


View Full Text Article

Enhanced HTML    Acrobat PDF (205 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Permanent snow and ice cover great portions of the Arctic and the Antarctic. It appears in winter months in northern parts of America, Asia, and Europe. Therefore snow is an important component of the hydrological cycle. Also, it is a main regulator of the seasonal variation of the planetary albedo. This seasonal change in albedo is determined largely by the snow cover. However, the presence of pollutants and the microstructure of snow (e.g., the size and shape of grains, which depend also on temperature and on the age of the snow) are also of importance in the variation of the snow’s spectral albedo. The snow’s spectral albedo and its bidirectional reflectance are studied theoretically. The albedo also determines the spectral absorptance of snow, which is of importance, e.g., in studies of the heating regime in snow. We investigate the influence of the nonspherical shape of grains and of close-packed effects on snow’s reflectance in the visible and the near-infrared regions of the electromagnetic spectrum. The rate of the spectral transition from highly reflective snow in the visible to almost totally absorbing black snow in the infrared is governed largely by the snow’s grain sizes and by the load of pollutants. Therefore both the characteristics of snow and its concentration of impurities can be monitored on a global scale by use of spectrometers and radiometers placed on orbiting satellites.

© 2004 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.0290) Scattering : Scattering
(290.1990) Scattering : Diffusion
(290.4020) Scattering : Mie theory
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media

History
Original Manuscript: June 4, 2003
Revised Manuscript: October 31, 2003
Published: March 1, 2004

Citation
Alexander A. Kokhanovsky and Eleonora P. Zege, "Scattering optics of snow," Appl. Opt. 43, 1589-1602 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-7-1589

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited