OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 7 — Mar. 1, 2004
  • pp: 1589–1602

Scattering optics of snow

Alexander A. Kokhanovsky and Eleonora P. Zege  »View Author Affiliations


Applied Optics, Vol. 43, Issue 7, pp. 1589-1602 (2004)
http://dx.doi.org/10.1364/AO.43.001589


View Full Text Article

Enhanced HTML    Acrobat PDF (205 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Permanent snow and ice cover great portions of the Arctic and the Antarctic. It appears in winter months in northern parts of America, Asia, and Europe. Therefore snow is an important component of the hydrological cycle. Also, it is a main regulator of the seasonal variation of the planetary albedo. This seasonal change in albedo is determined largely by the snow cover. However, the presence of pollutants and the microstructure of snow (e.g., the size and shape of grains, which depend also on temperature and on the age of the snow) are also of importance in the variation of the snow’s spectral albedo. The snow’s spectral albedo and its bidirectional reflectance are studied theoretically. The albedo also determines the spectral absorptance of snow, which is of importance, e.g., in studies of the heating regime in snow. We investigate the influence of the nonspherical shape of grains and of close-packed effects on snow’s reflectance in the visible and the near-infrared regions of the electromagnetic spectrum. The rate of the spectral transition from highly reflective snow in the visible to almost totally absorbing black snow in the infrared is governed largely by the snow’s grain sizes and by the load of pollutants. Therefore both the characteristics of snow and its concentration of impurities can be monitored on a global scale by use of spectrometers and radiometers placed on orbiting satellites.

© 2004 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.0290) Scattering : Scattering
(290.1990) Scattering : Diffusion
(290.4020) Scattering : Mie theory
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media

History
Original Manuscript: June 4, 2003
Revised Manuscript: October 31, 2003
Published: March 1, 2004

Citation
Alexander A. Kokhanovsky and Eleonora P. Zege, "Scattering optics of snow," Appl. Opt. 43, 1589-1602 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-7-1589


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. W. Nolin, S. Liang, “Progress in bi-directional reflectance modeling and applications for surface particulate media: snow and soils,” Remote Sens. Rev. 18, 307–342 (2000). [CrossRef]
  2. R. A. Massom, H. Eicken, C. Haas, M. O. Jeffris, M. R. Drinkwater, M. Sturm, A. P. Worby, X. Wu, V. I. Lytle, S. Ushio, K. Morris, P. A. Reid, S. G. Warren, I. Allison, “Snow on Antarctic ice,” Rev. Geophys. 39, 413–445 (2001). [CrossRef]
  3. S. G. Warren, “Optical properties of snow,” Rev. Geophys. Space Phys. 2, 67–89 (1982). [CrossRef]
  4. W. J. Wiscombe, S. G. Warren, “A model for the spectral albedo of snow. I. Pure snow,” J. Geophys. Res. 37, 2712–2733 (1981).
  5. T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, F. Nishio, “Effects of snow physical parameters on spectral albedo and bi-directional reflectance of snow surface,” J. Geophys. Res. 105, 10,219–10,236 (2000). [CrossRef]
  6. W. Li, K. Stamnes, B. Chen, “Snow grain size retrieved from near-infrared radiances at multiple wavelengths,” Geophys. Res. Lett. 28, 1699–1702 (2001). [CrossRef]
  7. M. I. Mishchenko, L. D. Travis, A. A. Lacis, Absorption, Scattering, and Emission of Light by Small Particles (Cambridge U. Press, Cambridge, 2002).
  8. A. A. Kokhanovsky, Polarization Optics of Random Media (Springer-Praxis, Chichester, U.K., 2003).
  9. M. I. Mishchenko, J. M. Dlugach, E. G. Yanovitskij, N. T. Zakharova, “Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces,” J. Quant. Spectrosc. Radiat. Transfer 63, 409–432 (1999). [CrossRef]
  10. A. P. Ivanov, V. A. Loiko, V. P. Dik, Light Propagation in Close-Packed Media (Nauka i Tekhnika, Minsk, Belarus, 1988).
  11. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  12. A. A. Kokhanovsky, Light Scattering Media Optics: Problems and Solutions (Springer-Praxis, Chichester, U.K., 2001).
  13. L. Tsang, J. A. Kong, R. T. Shin, Theory of Microwave Remote Sensing (Wiley-Interscience, New York, 1985).
  14. G. V. Rozenberg, “Optical characteristics of thick weakly absorbing scattering layers,” Dokl. Akad. Nauk SSSR 145, 775–777 (1962).
  15. E. P. Zege, A. P. Ivanov, I. L. Katsev, Image Transfer through a Scattering Medium (Springer-Verlag, New York, 1991). [CrossRef]
  16. H. C. van de Hulst, Multiple Light Scattering: Tables, Formulas and Applications (Academic, New York, 1980).
  17. A. A. Kokhanovsky, “Reflection and polarization of light by semi-infinite turbid media: simple approximations,” J. Colloid Interface Sci. 251, 429–431 (2002). [CrossRef]
  18. A. A. Kokhanovsky, “The accuracy of selected approximations for the reflection function of a semi-infinite turbid medium,” J. Appl. Phys. D 35, 1057–1062 (2002). [CrossRef]
  19. A. A. Kokhanovsky, V. V. Rozanov, E. P. Zege, H. Bovensmann, J. P. Burrows, “A semi-analytical cloud retrieval algorithm using backscattering radiation in 04.–2.4 μm spectral range,” J. Geophys. Res. D 108, 10.1029/2001JD001543 (2003).
  20. I. N. Minin, Radiative Transfer Theory in Planetary Atmospheres (Nauka, Moscow, 1988).
  21. E. G. Yanovitskij, Light Scattering in Inhomogeneous Atmospheres (Springer-Verlag, New York, 1997). [CrossRef]
  22. V. V. Sobolev, Light Scattering in Planetary Atmospheres (Nauka, Moscow, 1972).
  23. R. C. Hubley, “Measurement of diurnal variations in snow albedo on Lemon Greek Glacier, Alaska,” J. Glaciol. 2, 560–563 (1955). [CrossRef]
  24. N. P. Rusin, Meteorological and Radiative Regime of Antarctica (Gidrometeoizdat, Leningrad, 1961).
  25. B. Barkey, M. Bailey, K.-N. Liou, J. Hallett, “Light-scattering properties of plate and column ice crystals generated in a laboratory cold chamber,” Appl. Opt. 41, 5792–5796 (2002). [CrossRef] [PubMed]
  26. K. Muinonen, T. Nusiainen, P. Fast, K. Lumme, J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577–601 (1996). [CrossRef]
  27. T. Nousiainen, K. Muinonen, “Light scattering by Gaussian, randomly oscillating raindrops,” J. Quant. Spectrosc. Radiat. Transfer 63, 643–666 (1999). [CrossRef]
  28. A. Macke, “Modellierung der Optischen Eigenschaften von Cirruswolken,” Ph.D. dissertation, (University of Hamburg, Hamburg, Germany, 1994).
  29. A. Macke, J. Mueller, E. Raschke, “Scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996). [CrossRef]
  30. P. Yang, K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71, 223–248 (1998).
  31. K. N. Liou, Introduction to Atmospheric Radiation (Academic, New York, 2002).
  32. W. E. K. Middleton, A. G. Mungall, “The luminous directional reflectance of snow,” J. Opt. Soc. Am. 42, 572–579 (1952). [CrossRef]
  33. B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press, Cambridge, 1993). [CrossRef]
  34. D. Domingue, B. Hartmon, A. Verbiscer, “The scattering properties of natural terrestrial snow versus icy satellite surfaces,” Icarus 128, 28–48 (1997). [CrossRef]
  35. A. A. Kokhanovsky, “Optical properties of irregularly shaped particles,” J. Appl. Phys. D 36, 915–923 (2003). [CrossRef]
  36. A. P. Ivanov, S. A. Makarevich, A. Y. Khairullina, “On specific features of radiation propagation in tissues and bioliquids with closely packed particles,” J. Appl. Spectrosc. 47, 662–668 (1987). [CrossRef]
  37. V. A. Loiko, G. I. Ruban, “Absorption and scattering of light by a photolayer with closely packed particles,” Opt. Spectrosc. 88, 834–839 (2000). [CrossRef]
  38. C. F. Bohren, R. L. Beschta, “Snowpack albedo and snow density,” Cold Regions Sci. Technol. 1, 47–50 (1979). [CrossRef]
  39. C. F. Bohren, “Colors of snow, frozen waterfalls, and icebergs,” J. Opt. Soc. Am. 12, 1646–1651 (1983). [CrossRef]
  40. A. A. Kokhanovsky, A. Macke, “Integral light scattering and absorption characteristics of large nonspherical particles,” Appl. Opt. 36, 8785–8790 (1997). [CrossRef]
  41. C. F. Bohren, B. R. Barkstrom, “Theory of the optical properties of snow,” J. Geophys. Res. 79, 4527–4535 (1974). [CrossRef]
  42. T. C. Grenfell, S. G. Warren, P. C. Mullen, “Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths,” J. Geophys. Res. 99, 18,669–18,684 (1994). [CrossRef]
  43. S. G. Warren, “Optical properties of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984). [CrossRef] [PubMed]
  44. A. A. Kokhanovsky, V. V. Rozanov, “The physical parameterization of the top-of-atmosphere reflectrion function for a cloudy atmosphere-underlying surface system: the oxygen A-band case study,” J. Quant. Spectrosc. Radiat. Transfer (to be published).
  45. E. P. Zege, A. A. Kokhanovsky, I. L. Katsev, I. N. Polonsky, A. S. Prikhach, “The retrieval of the effective radius of snow grains and control of snow pollution with GLI data,” in Proceedings of Conference on Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, L. D. Travis, J. W. Hovenier, eds. (American Meteorological Society, Boston, Mass., 1998), pp. 288–290.
  46. M. Fily, B. Bourdlles, J. P. Dedieu, C. Sergent, “Comparison of in situ and Landsat Thematic Mapper derived snow grain characteristics in the Alps,” Remote Sens. Environ. 59, 452–460 (1997). [CrossRef]
  47. A. W. Nolin, J. Dozier, “A hyperspectral method for remotely sensing the grain size of snow,” Remote Sens. Environ. 74, 207–216 (2000). [CrossRef]
  48. T. H. Painter, J. Dozier, D. A. Roberts, R. E. Davis, R. O. Green, “Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data,” Remote Sens. Environ. 85, 64–77 (2003). [CrossRef]
  49. T. C. Grenfell, D. K. Perovich, J. A. Ogren, “Spectral albedos of an alpine snowpack,” Cold Regions Sci. Technol. 4, 121–127 (1981). [CrossRef]
  50. C. Sergent, C. Leroux, E. Pougatch, F. Guirado, “Hemispherical-directional reflectance measurements of natural snow in the 0.9–1.45 μm spectral range: comparison with adding-doubling modelling,” Ann. Glaciol. 26, 59–63 (1998).
  51. T. Aoki, T. Aoki, M. Fukabori, Y. Tachibana, F. Nishio, T. Oishi, “Spectral albedo observation of the snow field at Barrow,” Polar Meteorol. Glaciol. 12, 1–9 (1988).
  52. T. H. Painter, B. Duval, W. H. Thomas, M. Mendez, S. Heintzelman, J. Dozier, “Detection and quantification of snow algae with an airborne spectrometer,” Appl. Environ. Microbiol. 67, 5267–5272 (2001). [CrossRef] [PubMed]
  53. G. Horneck, “The microbial world and the case for Mars,” Planet. Space Sci. 48, 1053–1063 (2000). [CrossRef]
  54. G. Horneck, P. Rettberg, G. Reitz, J. Wehner, U. Eschweiler, K. Strauch, C. Panitz, V. Starke, C. Baumstark-Khan, “Protection of bacterial spores in space, a contribution to the discussion on panspermia,” Origins Life Evol. Biosphere 31, 527–547 (2001). [CrossRef]
  55. S. Marshall, R. Oglesby, “An improved snow hydrology for GCMs. 1. Snow cover fraction, albedo, grain size, and age,” Climate Dynam. 10, 21–37 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited