OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 8 — Mar. 10, 2004
  • pp: 1628–1637

Monte Carlo modeling of optical coherence tomography imaging through turbid media

Qiang Lu, Xiaosong Gan, Min Gu, and Qingming Luo  »View Author Affiliations


Applied Optics, Vol. 43, Issue 8, pp. 1628-1637 (2004)
http://dx.doi.org/10.1364/AO.43.001628


View Full Text Article

Enhanced HTML    Acrobat PDF (255 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We combine a Monte Carlo technique with Mie theory to develop a method for simulating optical coherence tomography (OCT) imaging through homogeneous turbid media. In our model the propagating light is represented by a plane wavelet; its line propagation direction and path length in the turbid medium are determined by the Monte Carlo technique, and the process of scattering by small particles is computed according to Mie theory. Incorporated into the model is the numerical phase function obtained with Mie theory. The effect of phase function on simulation is also illustrated. Based on this improved Monte Carlo technique, OCT imaging is directly simulated and phase information is recorded. Speckles, resolution, and coherence gating are discussed. The simulation results show that axial and transversal resolutions decrease as probing depth increases. Adapting a light source with a low coherence improves the resolution. The selection of an appropriate coherence length involves a trade-off between intensity and resolution.

© 2004 Optical Society of America

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.7050) Medical optics and biotechnology : Turbid media
(290.5850) Scattering : Scattering, particles

History
Original Manuscript: June 6, 2003
Revised Manuscript: October 31, 2003
Published: March 10, 2004

Citation
Qiang Lu, Xiaosong Gan, Min Gu, and Qingming Luo, "Monte Carlo modeling of optical coherence tomography imaging through turbid media," Appl. Opt. 43, 1628-1637 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-8-1628


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Imaging of macular disease with optical coherence tomography,” Opthalmology 120, 217–229 (1995).
  3. J. M. Schmit, M. Yadlowsky, R. F. Bonner, “Subsurface imaging of living skin with optical coherence microscopy,” Dermatology 191, 93–98 (1995). [CrossRef]
  4. G. Yao, L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999). [CrossRef] [PubMed]
  5. J. M. Schmitt, A. Knuttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997). [CrossRef]
  6. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994). [CrossRef] [PubMed]
  7. Y. Pan, R. Birngruber, J. Rosperich, R. Engelhardt, “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt. 34, 6564–6574 (1995). [CrossRef] [PubMed]
  8. D. J. Smithies, T. Lindmo, Z. P. Chen, J. S. Nelson, T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998). [CrossRef] [PubMed]
  9. A. Tycho, T. M. Jorgensen, H. T. Yura, P. E. Anderson, “Derivation of a Monte Carlo method for modeling heterodyne detection in optical coherence tomography systems,” Appl. Opt. 41, 6676–6691 (2002). [CrossRef] [PubMed]
  10. L. Thrane, H. T. Yura, P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle,” J. Opt. Soc. Am. A 17, 484–490 (2000). [CrossRef]
  11. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  12. V. R. Daria, C. Saloma, S. Kawata, “Excitation with a focused, pulsed optical beam in scattering media: diffraction effects,” Appl. Opt. 39, 5244–5255 (2000). [CrossRef]
  13. I. Lux, L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, Boca Raton, Fla., 1991).
  14. L. H. Wang, S. L. Jacques, L. Q. Zheng, “MCML-Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995). [CrossRef] [PubMed]
  15. A. Dunn, “Light scattering properties of cells,” Ph.D. dissertation (University of Texas at Austin, 1997).
  16. A. L. Petoukhova, W. Steenbergen, F. F. M. De Mul, “Path-length distribution and path-length-resolved Doppler measurements of multiply scattered photons by use of low-coherence interferometry,” Opt. Lett. 26, 1492–1494 (2001). [CrossRef]
  17. Y. Zhao, Z. Chen, Z. Ding, H. Ren, J. S. Nelson, “Real-time phase resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett. 27, 98–100 (2002). [CrossRef]
  18. S. Bartel, A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media,” Appl. Opt. 39, 1580–1588 (2000). [CrossRef]
  19. A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, I. J. Bigio, “Diffuse backscattering Mueller matrices of highly scattering media,” Opt. Express 1, 441–543 (1997), http://www.opticsexpress.org . [CrossRef] [PubMed]
  20. J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42, 1427–1439 (1997). [CrossRef] [PubMed]
  21. X. Gan, M. Gu, “Spatial distribution of single-photon and two-photon fluorescence light in scattering media: Monte Carlo simulation,” Appl. Opt. 39, 1575–1579 (2000). [CrossRef]
  22. S. H. Xiang, L. Zhou, J. M. Schmitt, “Speckle noise reduction for optical coherence tomography,” in Optical and Imaging Techniques for Biomonitoring III, H.-J. Foth, R. Marchesini, H. Podbielska, eds., Proc. SPIE3196, 79–88 (1998). [CrossRef]
  23. M. Bashkansky, J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25, 545–547 (2000). [CrossRef]
  24. X. Gan, S. Schilders, M. Gu, “Fluorescence microscopic imaging through tissue-like turbid media,” J. Appl. Phys. 87, 3214–3221 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited