OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 8 — Mar. 10, 2004
  • pp: 1663–1668

Gated fiber-optic-coupled detector for in vivo real-time radiation dosimetry

Brian L. Justus, Paul Falkenstein, Alan L. Huston, Maria C. Plazas, Holly Ning, and Robert W. Miller  »View Author Affiliations


Applied Optics, Vol. 43, Issue 8, pp. 1663-1668 (2004)
http://dx.doi.org/10.1364/AO.43.001663


View Full Text Article

Enhanced HTML    Acrobat PDF (89 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Gated detection of the output of a fiber-optic-coupled radiation dosimeter effectively eliminated the direct contribution of C̆erenkov radiation to the signal. The radiation source was an external beam radiotherapy machine that provided pulses of 6-MeV x rays. Gated detection was used to discriminate the signal collected during the radiation pulses, including C̆erenkov interference, from the signal collected between the radiation pulses due only to phosphorescence from the Cu1+-doped glass detector. Gated detection of the long-lived phosphorescence of the Cu1+-doped glass provided real-time dose measurements that were linear with the absorbed dose and that were accurate for all field sizes studied.

© 2004 Optical Society of America

OCIS Codes
(040.7480) Detectors : X-rays, soft x-rays, extreme ultraviolet (EUV)
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(170.3890) Medical optics and biotechnology : Medical optics instrumentation

History
Original Manuscript: October 15, 2003
Revised Manuscript: December 12, 2003
Published: March 10, 2004

Citation
Brian L. Justus, Paul Falkenstein, Alan L. Huston, Maria C. Plazas, Holly Ning, and Robert W. Miller, "Gated fiber-optic-coupled detector for in vivo real-time radiation dosimetry," Appl. Opt. 43, 1663-1668 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-8-1663


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B 184, 55–67 (2001). [CrossRef]
  2. A. S. Beddar, T. R. Mackie, F. H. Attix, “Water equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical considerations,” Phys. Med. Biol. 37, 1883–1900 (1992). [CrossRef] [PubMed]
  3. A. S. Beddar, T. R. Mackie, F. H. Attix, “Water equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37, 1901–1913 (1992). [CrossRef] [PubMed]
  4. S. F. deBoer, A. S. Beddar, J. A. Rawlinson, “Optical filtering and spectral measurements of radiation-induced light in plastic scintillation dosimetry,” Phys. Med. Biol. 38, 945–958 (1993). [CrossRef]
  5. A. S. Beddar, “A new scintillator detector system for the quality assurance of 60Co and high-energy therapy machines,” Phys. Med. Biol. 39, 253–263 (1994). [CrossRef] [PubMed]
  6. M. A. Arnfield, H. E. Gaballa, R. D. Zwicker, Q. Islam, R. Schmidt-Ulrich, “Radiation-induced light in optical fibers and plastic scintillators: application to brachytherapy dosimetry,” IEEE Trans. Nucl. Sci. 43, 2077–2084 (1996). [CrossRef]
  7. F. Pain, R. Mastrippolito, Y. Charon, D. Comar, V. Leviel, J. F. Pujol, L. Valentin, “SIC, an intracerebral radiosensitive probe for in vivo neuropharmacology investigations in small laboratory animals: theoretical considerations and physical characteristics,” IEEE Trans. Nucl. Sci. 47, 25–32 (2000). [CrossRef]
  8. A. S. Beddar, T. J. Kinsella, A. Ikhlef, C. H. Sibata, “A miniature ‘scintillator-fiberoptic-PMT’ detector system for the dosimetry of small fields in stereotactic radiosurgery,” IEEE Trans. Nucl. Sci. 48, 924–928 (2001). [CrossRef]
  9. A. S. Beddar, S. Law, N. Suchowerska, T. R. Mackie, “Plastic scintillation dosimetry: optimization of light collection efficiency,” Phys. Med. Biol. 48, 1141–1152 (2003). [CrossRef] [PubMed]
  10. A. S. Beddar, T. R. Mackie, F. H. Attix, “Cerenkov light generated in optical fibres and other light pipes irradiated by electron beams,” Phys. Med. Biol. 37, 925–935 (1992). [CrossRef]
  11. A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, R. Altemus, “Optically stimulated luminescent glass optical fiber dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002). [CrossRef]
  12. B. L. Justus, C. D. Merritt, K. J. Pawlovich, A. L. Huston, S. Rychnovsky, “Optically stimulated luminescence dosimetry using doped fused quartz,” Radiat. Prot. Dosim. 84, 189–192 (1999). [CrossRef]
  13. J. C. Zhang, B. Moine, C. Pedrini, C. Parent, G. Flem, “Optical spectroscopy of monovalent copper-doped borate glass,” J. Phys. Chem. Solids 51, 933–939 (1990). [CrossRef]
  14. M. A. Garcia, E. Borsella, S. E. Paje, J. Llopis, M. A. Villegas, R. Polloni, “Luminescence time decay from Cu+ ions in sol-gel coatings,” J. Lumin. 93, 253–259 (2001). [CrossRef]
  15. K. J. Jordan, “Evaluation of ruby as a fluorescent sensor for optical fiber-based radiation dosimetry,” in Fluorescence Detection IV, E. Roland Menzel, Abraham Katzir, eds., Proc. SPIE2705, 170–178 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited