OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 8 — Mar. 10, 2004
  • pp: 1683–1694

Tunable, oblique incidence resonant grating filter for telecommunications

Guido Niederer, Hans Peter Herzig, Joseph Shamir, Hans Thiele, Marc Schnieper, and Christian Zschokke  »View Author Affiliations


Applied Optics, Vol. 43, Issue 8, pp. 1683-1694 (2004)
http://dx.doi.org/10.1364/AO.43.001683


View Full Text Article

Enhanced HTML    Acrobat PDF (725 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have designed a tunable, oblique-incidence resonant grating filter that covers the C band as an add-drop device for incident TE-polarized light. We tune the filter by tilting a microelectromechanical systems platform onto which the filter is attached. The fabrication tolerances as well as the role of finite incident-beam size and limited device size were addressed. The maximum achievable efficiency of a finite-area device as well as a scaling law that relates the resonance peak width and the minimum device size is derived. In good agreement with simulations, measurements indicate a negligible change in shape of the resonance peak from 1526 nm at a 45° angle of incidence to 1573 nm at a 53° angle with a full width at half-maximum of 0.4 nm. In this range the shift of the peak wavelength is linear with respect to changes in the angle of incidence.

© 2004 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(120.2440) Instrumentation, measurement, and metrology : Filters
(220.4830) Optical design and fabrication : Systems design
(230.1950) Optical devices : Diffraction gratings
(230.7390) Optical devices : Waveguides, planar

History
Original Manuscript: July 28, 2003
Revised Manuscript: November 4, 2003
Published: March 10, 2004

Citation
Guido Niederer, Hans Peter Herzig, Joseph Shamir, Hans Thiele, Marc Schnieper, and Christian Zschokke, "Tunable, oblique incidence resonant grating filter for telecommunications," Appl. Opt. 43, 1683-1694 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-8-1683


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. See, for example, J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, D. L. Brundrett, “Guided-mode resonant subwavelength gratings: effect of finite beams and finite size,” J. Opt. Soc. Am. A 18, 1912–1928 (2001), and references therein.
  2. D. Lacour, G. Granet, J. P. Pluemey, A. Mure-Ravaud, “Polarization independence of a one-dimensional grating in conical mounting,” J. Opt. Soc. Am. A 20, 1546–1552 (2003). [CrossRef]
  3. A. Mizutani, H. Kukuta, K. Nakajima, K. Iwata, “Nonpolarizing guided-mode resonant grating filter for oblique incidence,” J. Opt. Soc. Am. A 18, 1261–1266 (2001). [CrossRef]
  4. S. Tibuleac, R. Magnusson, “Reflection and transmission guided-mode resonance filter,” J. Opt. Soc. Am. A 14, 1617–1626 (1997). [CrossRef]
  5. T. Overstolz, P.-A. Clerc, M. T. Gale, H. P. Herzig, G. Niederer, W. Noell, J. Söchtig, H. Thiele, N. F. de Rooij, “Tilting out-of-plane platform for optical applications,” in International Conference on Optical MEMS, conference digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 81–82. [CrossRef]
  6. H. Kogelnik, “Theory of dielectric waveguides,” in Integrated Optics, T. Tamir, ed. (Springer, New York, 1979), pp. 15–79.
  7. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. A 10, 1385–1392 (1982).
  8. D. Rosenblatt, A. Sharon, A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997). [CrossRef]
  9. S. M. Norton, T. Erdogan, G. M. Morris, “Coupled-mode theory of resonant grating filters,” J. Opt. Soc. Am. A 14, 629–639 (1997). [CrossRef]
  10. Z. Hegedus, R. Netterfield, “Low sideband guided-mode resonant filter,” Appl. Opt. 39, 1469–1473 (2000). [CrossRef]
  11. D. Shin, S. Tibuleac, T. A. Maldonado, R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37, 2634–2646 (1998). [CrossRef]
  12. I. A. Avrutsky, V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36, 1527–1539 (1989). [CrossRef]
  13. L. Mashev, E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985). [CrossRef]
  14. J. Saarinen, E. Noponen, J. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34, 2560–2565 (1995). [CrossRef]
  15. K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of diffraction by finite-number-of-periods grating,” J. Opt. Soc. Am. A 14, 907–917 (1997). [CrossRef]
  16. E. Popov, B. Bozhkov, “Corrugated waveguides as resonance optical filters—advantages and limitations,” J. Opt. Soc. Am. A 18, 1758–1764 (2001). [CrossRef]
  17. R. R. Boye, R. K. Kostuk, “Investigation of the effect of finite grating size on the performance of guided-mode resonance filters,” Appl. Opt. 39, 3649–3653 (2000). [CrossRef]
  18. D. K. Jacob, S. C. Dunn, M. G. Moharam, “Normally incident grating reflection filters for efficient narrow-band spectral filtering of finite beams,” J. Opt. Soc. Am. A 18, 2109–2120 (2001). [CrossRef]
  19. D. K. Jacob, S. C. Dunn, M. G. Moharam, “Design considerations for narrow-band dielectric resonant grating reflection filters of finite length,” J. Opt. Soc. Am. A 18, 2109–2120 (2001). [CrossRef]
  20. F. Lemarchand, S. Sentenac, H. Giovanni, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23, 1149–1151 (1998). [CrossRef]
  21. A. Mizutani, H. Kikuta, K. Iwata, “Wave localization of doubly periodic guided-mode resonant grating filters,” Opt. Rev. 10, 13–18 (2003). [CrossRef]
  22. O. Parriaux, V. A. Sychugov, V. Tishchenko, “Coupling gratings as waveguide functional elements,” Pure Appl. Opt. 5, 453–469 (1996). [CrossRef]
  23. W. W. Rigrod, D. Marcuse, “Radiation loss coefficient of asymmetric dielectric waveguides with shallow sinusoidal corrugations,” IEEE J. Quantum Electron. QE-12, 673–685 (1976). [CrossRef]
  24. T. Tamir, “Beam and waveguide couplers,” in Integrated Optics, T. Tamir, ed. (Springer, New York, 1979), pp. 83–137.
  25. N. M. Lyndin, O. Parriaux, V. A. Sychugov, “Waveguide excitation by a Gaussian beam and a finite size grating,” Sensors Actuators B 41, 23–29 (1997). [CrossRef]
  26. M. Schnieper, M. T. Gale, C. Zschokke, C. David, “Application and fabrication of subwavelength gratings,” in Diffractive Optics and Micro-Optics, R. Magnusson, ed., technical digest, Vol. 75 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 228–230.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited