OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 8 — Mar. 10, 2004
  • pp: 1710–1718

Lensless imaging from diffraction intensity measurements by use of a noniterative phase-retrieval method

Nobuharu Nakajima  »View Author Affiliations

Applied Optics, Vol. 43, Issue 8, pp. 1710-1718 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (2834 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method of reconstructing the complex amplitude of an object that is illuminated by a coherent wave from its Fresnel diffraction patterns is proposed for high-frequency wave phenomena such as x-rays and electron waves. A noniterative phase-retrieval method that uses a Gaussian filter is employed here, and it is shown that the object’s illumination with amplitude distribution in the Fraunhofer diffraction pattern of a circular aperture can be used as a substitute for the Gaussian filter. This method has an advantage over other noniterative phase-retrieval methods in that it can retrieve phase vortices.

© 2004 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.5070) Image processing : Phase retrieval

Original Manuscript: August 8, 2003
Revised Manuscript: September 28, 2003
Published: March 10, 2004

Nobuharu Nakajima, "Lensless imaging from diffraction intensity measurements by use of a noniterative phase-retrieval method," Appl. Opt. 43, 1710-1718 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. M. J. Coene, A. Thust, M. Op de Beeck, D. Van Dyck, “Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy,” Ultramicroscopy 64, 109–135 (1996). [CrossRef]
  2. Y. Takai, T. Kawasaki, Y. Kimura, T. Ikuta, R. Shimizu, “Dynamic observation of an atom-sized gold wire by phase electron microscopy,” Phys. Rev. Lett. 87, 106105 (2001). [CrossRef] [PubMed]
  3. M. Haider, G. Braunshausen, E. Schwan, “Correction of the spherical aberration of a 200 k TEM by means of a hexapole-corrector,” Optik (Stuttgart) 99, 167–179 (1995).
  4. M. A. O’Keefe, E. C. Nelson, Y. C. Wang, A. Thust, “Sub-ångström resolution of atomistic structures below 0.8 Å,” Philos. Mag. B 81, 1861–1878 (2001). [CrossRef]
  5. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948). [CrossRef] [PubMed]
  6. C. Giacovazzo, Direct Methods in Crystallography (Academic, New York, 1980).
  7. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef] [PubMed]
  8. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).
  9. J. Miao, P. Charalambous, J. Kirz, D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometer-sized non-crystalline specimens,” Nature 400, 342–344 (1999). [CrossRef]
  10. J. Miao, T. Ishikawa, B. Johnson, E. H. Anderson, B. Lai, K. O. Hodgson, “High resolution 3D X-ray diffraction microscopy,” Phys. Rev. Lett. 89, 088303 (2002). [CrossRef] [PubMed]
  11. J. Miao, K. O. Hodgson, D. Sayre, “An approach to three-dimensional structures of biomolecules by using single-molecule diffraction images,” Proc. Natl. Acad. Sci. USA 98, 6641–6645 (2001). [CrossRef] [PubMed]
  12. J. Miao, T. Ohsuna, O. Terasaki, K. O. Hodgson, M. A. O’Keefe, “Atomic resolution three-dimensional electron diffraction microscopy,” Phys. Rev. Lett. 89, 155502 (2002). [CrossRef] [PubMed]
  13. M. R. Teague, “Irradiance moments: their propagation and use for unique retrieval of phase,” J. Opt. Soc. Am. 72, 1199–1209 (1982). [CrossRef]
  14. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983). [CrossRef]
  15. T. E. Gureyev, A. Roberts, K. A. Nugent, “Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials,” J. Opt. Soc. Am. A 12, 1932–1941 (1995). [CrossRef]
  16. T. E. Gureyev, K. A. Nugent, “Phase retrieval with the transport-of-intensity equation. II. Orthogonal series solution for nonuniform illumination,” J. Opt. Soc. Am. A 13, 1670–1682 (1996). [CrossRef]
  17. N. Nakajima, “Phase retrieval from Fresnel zone intensity measurements by use of Gaussian filtering,” Appl. Opt. 37, 6219–6226 (1998). [CrossRef]
  18. R. E. Burge, M. A. Fiddy, A. H. Greenaway, G. Ross, “The phase problem,” Proc. R. Soc. London Ser. A 350, 191–212 (1976). [CrossRef]
  19. N. Nakajima, “Phase retrieval using the properties of entire functions,” in Advances in Imaging and Electron Physics, P. W. Hawkes, ed., (Academic, New York, 1995), Vol. 93, pp. 109–171. [CrossRef]
  20. S. Bajt, A. Barty, K. A. Nugent, M. MaCartney, M. Wall, D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000). [CrossRef] [PubMed]
  21. T. Wilson, A. R. Carlini, C. J. R. Sheppard, “Phase contrast microscopy by nearly full illumination,” Optik (Stuttgart) 70, 166–169 (1985).
  22. K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, Z. Barnea, “Quantitative phase imaging using hard X rays,” Phys. Rev. Lett. 77, 2961–2964 (1996). [CrossRef] [PubMed]
  23. N. Nakajima, M. Watanabe, “Phase retrieval from experimental far-field intensities by use of a Gaussian beam,” Appl. Opt. 41, 4133–4139 (2002). [CrossRef] [PubMed]
  24. L. J. Allen, M. P. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199, 65–75 (2001). [CrossRef]
  25. J. F. Nye, M. V. Berry, “Dislocation in wave trains,” Proc. R. Soc. London Ser. A 336, 165–190 (1974). [CrossRef]
  26. L. J. Allen, H. M. L. Faulkner, M. P. Oxley, D. Paganin, “Phase retrieval and aberration correction in the presence of vortices in high-resolution transmission electron microscopy,” Ultramicroscopy 88, 85–97 (2001). [CrossRef] [PubMed]
  27. L. J. Allen, H. M. L. Faulkner, K. A. Nugent, M. P. Oxley, D. Paganin, “Phase retrieval from images in the presence of first-order vortices,” Phys. Rev. E 63, 037602 (2001). [CrossRef]
  28. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), p. 77.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited