OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 8 — Mar. 10, 2004
  • pp: 1761–1772

Scattering matrix approach to the resonant states and Q values of microdisk lasing cavities

Aliaksandr I. Rahachou and Igor V. Zozoulenko  »View Author Affiliations

Applied Optics, Vol. 43, Issue 8, pp. 1761-1772 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (842 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a scattering matrix approach for the numerical calculation of resonant states and Q values of a nonideal optical disk cavity with an arbitrary shape and with an arbitrary varying refraction index. The developed method is applied to study the effect of surface roughness and inhomogeneity of the refraction index on Q values of microdisk cavities for lasing applications. We demonstrate that even small surface roughness (Δr ≲ λ/50) can lead to a drastic degradation of high-Q cavity modes by many orders of magnitude. The results of the numerical simulation are analyzed and explained in terms of wave reflection at a curved dielectric interface, combined with an examination of Poincaré surfaces of section and of Husimi distributions.

© 2004 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.4780) Lasers and laser optics : Optical resonators
(230.5750) Optical devices : Resonators
(290.4020) Scattering : Mie theory
(290.5880) Scattering : Scattering, rough surfaces

Original Manuscript: July 1, 2003
Revised Manuscript: October 6, 2003
Published: March 10, 2004

Aliaksandr I. Rahachou and Igor V. Zozoulenko, "Scattering matrix approach to the resonant states and Q values of microdisk lasing cavities," Appl. Opt. 43, 1761-1772 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Yamamoto, R. E. Slusher, “Optical processes in microcavities,” Phys. Today 46, 66–72 (1993). [CrossRef]
  2. J. U. Nöckel, R. K. Chang, “2-d microcavities: theory and experiments,” in Cavity-Enhanced Spectroscopies, R. D. van Zee, J. P. Looney, eds., Vol. 40 of Experimental Methods in the Physical Sciences (Academic, San Diego, 2002), pp. 185–226.
  3. S. C. Hill, R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds., Vol. 1 of Advanced Series in Applied Physics (World Scientific, Singapore, 1989), pp. 3–61.
  4. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992). [CrossRef]
  5. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63, 1310–1312 (1992). [CrossRef]
  6. M. Fujita, K. Inoshita, T. Bata, “Room temperature continuous wave lasing characteristics of GaInAsP/InP microdisk injection laser,” Electron. Lett. 34, 278–279 (1998). [CrossRef]
  7. B. Gayral, J. M. Gérard, A. Lemaı̂tre, C. Dupuis, L. Manin, J. L. Pelouard, “High-Q wet etched GaAS microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75, 1908–1910 (1999). [CrossRef]
  8. C. Seassal, X. Letartre, J. Brault, M. Gendry, P. Pottier, P. Viktorovitch, O. Piquet, P. Blondy, D. Cros, O. Marty, “InAs quantum wires in InP-based microdiscs: mode identification and continuous wave room temperature laser operation,” J. Appl. Phys. 88, 6170–6174 (2000). [CrossRef]
  9. A. Dodabalapur, M. Berggren, R. E. Slusher, Z. Bao, A. Timko, P. Schiortino, E. Laskowski, H. E. Katz, O. Nalamasu, “Resonators and materials for organic lasers based on energy transfer,” IEEE J. Sel. Top. Quantum Electron. 4, 67–74 (1998). [CrossRef]
  10. M. Theander, T. Granlund, D. M. Johanson, A. Ruseckas, V. Sundström, M. R. Andersson, O. Inganäs, “Lasing in a microcavity with an oriented liquid-crystalline polyfluorene copolymer as active layer,” Adv. Mater. 13, 323–327 (2001). [CrossRef]
  11. R. C. Polson, Z. Vardeny, D. A. Chinn, “Multiple resonances in microdisk lasers of π-conjugated polymers,” Appl. Phys. Lett. 81, 1561–1563 (2002). [CrossRef]
  12. K. S. Yee, “Numerical solution of initial boundary-value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1996).
  13. B.-J. Li, P.-L. Liu, “Analysis of far-field patterns of microdisk resonators by the finite-difference time-domain method,” IEEE J. Quantum Electron. 33, 1489–1491 (1997). [CrossRef]
  14. M. N. O. Sadiku, Numerical Techniques in Electromagnetics (CRC Press, Boca Raton, Fla., 2001).
  15. P. C. Waterman, “Symmetry, unitarity and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971). [CrossRef]
  16. M. I. Mishchenko, L. D. Travis, A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles, (Cambridge U. Press, Cambridge, 2002).
  17. P. A. Knipp, T. L. Reinecke, “Boundary-element method for the calculation of the electronic states in semiconductor nanostructures,” Phys. Rev. B 54, 1880–1891 (1996). [CrossRef]
  18. J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A, Pure Appl. Opt. 5, 53–60 (2003).
  19. S. V. Boriskina, T. M. Benson, P. Sewell, A. I. Nosich, “Highly efficient design of spectrally engineered whispering-gallery-mode microlaser resonators,” Opt. Quantum Electron. 35, 545–559 (2003). [CrossRef]
  20. V. V. Nikolsky, T. I. Nikolskaya, Decomposition Approach to the Problems of Electrodynamics (Nauka, Moscow, 1983; in Russian).
  21. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge U. Press, Cambridge, 1995). [CrossRef]
  22. M. Hentschel, K. Richter, “Quantum chaos in optical systems: the annular billiar,” Phys. Rev. E 66, 056207 1–13 (2002). [CrossRef]
  23. F. T. Smith, “Lifetime matrix in collision theory,” Phys. Rev. 118, 349–356 (1960). [CrossRef]
  24. M. Bauer, P. A. Mello, K. W. McVoy, “Time delay in nuclear reactions,” Z. Phys. A 293, 151–163 (1979). [CrossRef]
  25. Z. S. Wu, Y. P. Y. Wang, “Electromagnetic scattering for multilayered spheres: recursive algorithms,” Radio Sci. 26, 1393–1401 (1991). [CrossRef]
  26. B. R. Johnson, “Light scattering by a multilayer sphere,” Appl. Opt. 35, 3286–3296 (1996). [CrossRef] [PubMed]
  27. A. V. Snyder, J. D. Love, “Reflection at a curved dielectric interface—electromagnetic tunneling,” IEEE Trans. Microwave Theory Tech. MTT-23, 134–141 (1975). [CrossRef]
  28. M. Hentschel, H. Schomerus, “Fresnel laws at curved dielectric interfaces of microresonators,” Phys. Rev. E 65, 045603 (2002). [CrossRef]
  29. A. D. Stone, “Wave-chaotic optical resonators and lasers,” in Proceedings of the Nobel Symposium Quantum Chaos 2000, Phys. Scr. T90, 248–262 (2001).
  30. B. Crespi, G. Perez, S. J. Chang, “Quantum Poincaré sections for two-dimensional billiards,” Phys. Rev. E 47, 986–991 (1993). [CrossRef]
  31. J. Wiersig, “Hexagonal dielectric resonators and microcrystal lasers,” Phys. Rev. A 67, 023807 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited