OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 9 — Mar. 19, 2004
  • pp: 1789–1793

Prototype CO2 Laser-induced Long-period Fiber Grating Variable Optical Attenuators and Optical Tunable Filters

Mohammad I. Braiwish, Brent L. Bachim, and Thomas K. Gaylord  »View Author Affiliations


Applied Optics, Vol. 43, Issue 9, pp. 1789-1793 (2004)
http://dx.doi.org/10.1364/AO.43.001789


View Full Text Article

Acrobat PDF (204 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Prototype devices capable of variable attenuation at a fixed wavelength, wavelength tuning at a constant attenuation, and combinations of these spectral characteristics are demonstrated in CO2 laser-induced long-period fiber gratings (LPFGs). These devices are based on controlled flexure by means of a piezoceramic platform. CO2 laser-induced LPFG characteristics along with the fabrication and testing processes of these gratings are discussed. Devices with a optical attenuation of 13 dB and a wavelength tuning of 7 nm are reported.

© 2004 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(230.0230) Optical devices : Optical devices

Citation
Mohammad I. Braiwish, Brent L. Bachim, and Thomas K. Gaylord, "Prototype CO2 Laser-induced Long-period Fiber Grating Variable Optical Attenuators and Optical Tunable Filters," Appl. Opt. 43, 1789-1793 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-9-1789


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S.-S. Lee, Y.-S. Son, and T.-K. Yoo, “Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network,” IEEE Photon. Technol. Lett. 11, 590–592 (1999).
  2. K. Hirabayashi, M. Wada, and C. Amano, “Compact optical-fiber variable attenuator arrays with polymer-network liquid crystals,” Appl. Opt. 40, 3509–3517 (2001).
  3. X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “MEMS variable optical attenuator using low driving voltage for DWDM systems,” Electron. Lett. 38, 382–383 (2002).
  4. N. A. Riza and Z. Yaqoob, “Submicrosecond speed variable optical attenuator using acoustooptics,” IEEE Photon. Technol. Lett. 13, 693–695 (2001).
  5. M. J. Mughal and N. A. Riza, “Compact acoustooptic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett. 14, 510–512 (2002).
  6. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
  7. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21, 336–338 (1996).
  8. L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373–1378 (1999).
  9. A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, and L. Rivoallan, “Long period fiber grating as a wavelength selective polarisation element,” Electron. Lett. 33, 616–617 (1997).
  10. G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, M. I. Braiwish, E. N. Glytsis, and E. Anemogiannis, “Tuning, attenuating, and switching by controlled flexure of long-period fiber gratings,” Opt. Lett. 26, 61–63 (2001).
  11. D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, “CO2 laser-induced long-period fiber gratings: spectral characteristics, cladding modes and polarisation independence,” Electron. Lett. 34, 1416–1417 (1998).
  12. D. D. Davis, “Long-period fiber gratings fabricated with focused CO2 laser pulses,” Ph.D. dissertation (Georgia Institute of Technology, Atlanta, Georgia, 1999).
  13. H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long-period fiber gratings for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
  14. H. S. Ryu, Y. Park, S. T. Oh, Y. Chung, and D. Y. Kim, “Effect of asymmetric stress relaxation on the polarization-dependent transmission characteristics of a CO2 laser-written long-period fiber grating,” Opt. Lett. 28, 155–157 (2003).
  15. G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser induced long-period fiber gratings,” Electron. Lett. 36, 1354–1355 (2000).
  16. R. F. Hellbaum, R. G. Bryant, and R. L. Fox, “Thin layer composite unimorph ferroelectric driver and sensor,” U.S. Patent 5,632,841 (27 May 1997).
  17. B. L. Bachim and T. K. Gaylord, “Automated flexure testing of axially rotated optical fiber gratings,” Rev. Sci. Instrum. 73, 3454–3457 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited