OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 9 — Mar. 19, 2004
  • pp: 1811–1818

Strain mapping by measurement of the degree of polarization of photoluminescence

Daniel T. Cassidy, S. K. K. Lam, B. Lakshmi, and Douglas M. Bruce  »View Author Affiliations

Applied Optics, Vol. 43, Issue 9, pp. 1811-1818 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1058 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A technique is described for the simultaneous measurement of the difference in the normal components of strain and of the shear strain in luminescent III-V material from the degree of polarization (DOP) of photoluminescence. This technique for the measurement of shear strain and of the difference in the normal components of strain in InP was calibrated by applying known external loads on the bars of InP with V grooves etched into the bars and by fitting the experimental results to two-dimensional finite-element simulations. Fits to the difference in the normal components of strain (as opposed to stress) yielded significantly smaller residues. On this basis we conclude that the DOP of luminescence is proportional to the difference in the normal components of strain.

© 2004 Optical Society of America

OCIS Codes
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(160.6000) Materials : Semiconductor materials
(180.5810) Microscopy : Scanning microscopy
(250.5230) Optoelectronics : Photoluminescence

Original Manuscript: July 4, 2003
Revised Manuscript: December 8, 2003
Published: March 20, 2004

Daniel T. Cassidy, S. K. K. Lam, B. Lakshmi, and Douglas M. Bruce, "Strain mapping by measurement of the degree of polarization of photoluminescence," Appl. Opt. 43, 1811-1818 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Matthews, A. E. Blakeslee, “Defects in epitaxial multilayers,” J. Cryst. Growth 27, 118–125 (1974).
  2. G. E. Pikus, G. L. Bir, “Effect of deformation on the hole energy spectrum of germanium and silicon,” Sov. Phys. Solid State 1, 1502–1517 (1960).
  3. G. C. Osbourn, P. L. Gourley, I. J. Fritz, R. M. Biefeld, L. R. Dawson, T. E. Zipperian, “Principles and applications of semiconductor strained-layer superlattices,” in Semiconductors and Semimetals, R. Dingle, ed. (Academic, San Diego, Calif., 1987), Vol. 24.
  4. E. P. O’Reilly, “Valence band engineering in strained layer structures,” Semicond. Sci. Technol. 4, 121–137 (1989). [CrossRef]
  5. I. C. Bassignana, C. J. Miner, N. Puetz, “Photoluminescence and double-crystal x-ray study of InGaAsP/InP: effect of mismatch strain on bandgap,” J. Appl. Phys. 65, 4299–4305 (1989). [CrossRef]
  6. D. Geroshini, H. Temkin, “Optical properties of III-V strained-layer quantum wells,” J. Lumin. 44, 381–398 (1989). [CrossRef]
  7. F. M. Ryan, R. C. Miller, “The effect of uniaxial strain on the threshold current and output of GaAs lasers,” Appl. Phys. Lett. 3, 162–163 (1963). [CrossRef]
  8. P. G. Eliseev, B. N. Sverdlov, N. Shokhudzhaev, “Reduction of the threshold current of InGaAsP/InP heterolasers by unidirectional compression,” Sov. J. Quantum Electron. 14, 1120–1121 (1984). [CrossRef]
  9. T. Kobayashi, K. Sugiyama, “Effects of uniaxial stress on the double heterostructure lasers,” Jpn. J. Appl. Phys. 12, 1388–1392 (1973). [CrossRef]
  10. C. S. Adams, D. T. Cassidy, “Effect of stress on threshold, wavelength, and polarization of the output of semiconductor diode lasers,” J. Appl. Phys. 64, 6631–6638 (1988). [CrossRef]
  11. N. K. Dutta, D. C. Craft, “Effect of stress on the polarization of stimulated emission from injection lasers,” J. Appl. Phys. 56, 65–70 (1984). [CrossRef]
  12. N. B. Patel, J. E. Ripper, P. Brosson, “Behavior of threshold current and polarization of stimulated emission of GaAs injection lasers under uniaxial stress,” IEEE J. Quantum Electron. QE-9, 338–341 (1973). [CrossRef]
  13. V. Swaminathan, P. Parayanthal, R. L. Hartman, “Electro-optical effects of externally applied 〈100〉 uniaxial stress on InGaAsP 1.3- and 1.5-μm injection lasers,” Appl. Phys. Lett. 52, 1461–1463 (1988). [CrossRef]
  14. M. G. Daly, D. M. Bruce, P. E. Jessop, D. T. Cassidy, D. Yevick, “Metallization stress in weakly guiding InP/InGaAsP waveguides,” Semicond. Sci. Technol. 9, 1382–1390 (1994). [CrossRef]
  15. P. A. Kirkby, P. R. Selway, L. D. Westbrook, “Photoelastic waveguides and their effect on stripe-geometry GaAs/GaAlAs lasers,” J. Appl. Phys. 50, 4567–4579 (1979). [CrossRef]
  16. A. Jakubowicz, “Material and fabrication-related limitations to high-power operation of GaAs/AlGaAs and InGaAs/AlGaAs laser diodes,” Mater. Sci. Eng. B 44, 359–363 (1997). [CrossRef]
  17. D. Lisak, D. T. Cassidy, A. H. Moore, “Bonding stress and reliability of high power GaAs based lasers,” IEEE Trans. Components Packag. Manuf. Technol. Part A 24, 92–98 (2001). [CrossRef]
  18. J.-P. Landesman, “Micro-photoluminescence for the visualization of defects, stress, and temperature profiles in high-power III-V’s devices,” Mater. Sci. Eng. B 91-92, 55–61 (2002). [CrossRef]
  19. A. Barwolff, J. W. Tomms, R. Muller, S. Weiss, M. Hutter, H. Oppermann, H. Reichl, “Spectroscopic measurement of mounting-induced strain in optoelectronic devices,” IEEE Trans. Adv. Packag. 23, 170–175 (2000). [CrossRef]
  20. K. Kobayashi, Y. Inoue, T. Nishimura, M. Hirayama, Y. Akasaka, T. Kato, “Local-oxidation-induced stress measured by Raman microprobe spectroscopy,” J. Electrochem. Soc. 137, 1987–1989 (1990). [CrossRef]
  21. P. Van der Sluis, “Determination of strain in epitaxial semiconductor structures by high-resolution x-ray diffraction,” Appl. Phys. A 58, 129–134 (1994). [CrossRef]
  22. B. G. Yacobi, B. Elman, C. Jagannath, A. N. M. Masum Choudhury, M. Urban, “Cathodoluminescence observation of metallization-induced stress variations in GaAs/AlGaAs multiple quantum well structures,” Appl. Phys. Lett. 52, 1806–1808 (1988). [CrossRef]
  23. K. Rammohan, D. H. Rich, R. S. Goldman, J. Chen, H. H. Wieder, K. L. Kavanagh, “Study of micrometer-scale spatial variations in strain of a compositionally step-graded InGaAs/GaAs (001) heterostructure,” Appl. Phys. Lett. 66, 869–871 (1995). [CrossRef]
  24. A. Jakubowicz, “Revealing process-induced strain fields in GaAs/AlGaAs lasers via electron irradiation in a scanning electron microscope,” J. Appl. Phys. 70, 1800–1804 (1991). [CrossRef]
  25. P. D. Colbourne, D. T. Cassidy, “Imaging of stresses in GaAs diode lasers using polarization-resolved photoluminescence,” IEEE J. Quantum Electron. 29, 62–68 (1993). [CrossRef]
  26. J. Yang, D. T. Cassidy, “Strain measurement and estimation of photoelastic effects and strain-induced gain change in ridge waveguide lasers,” J. Appl. Phys. 77, 3382–3387 (1995). [CrossRef]
  27. P. D. Colbourne, D. T. Cassidy, “Bonding stress measurements from the degree of polarization of facet emission of AlGaAs superluminescent diodes,” IEEE J. Quantum Electron. 27, 914–920 (1991). [CrossRef]
  28. P. D. Colbourne, D. T. Cassidy, “Dislocation detection using polarization-resolved photoluminescence,” Can. J. Appl. Phys. 70, 803–812 (1992). [CrossRef]
  29. P. D. Colbourne, D. T. Cassidy, “Observation of dislocation stresses in InP using polarization-resolved photoluminescence,” Appl. Phys. Lett. 61, 1174–1176 (1992). [CrossRef]
  30. D. T. Cassidy, “Spatially resolved and polarization-resolved photoluminescence for the study of dislocations and strain in III-V materials,” Mater. Sci. Eng. B 91-92, 2–9 (2002). [CrossRef]
  31. J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1985).
  32. P. Kohnke, ed., ANSYS Theory Reference, Release 5.6 (ANSYS, Inc., Canonsburg, Pa., 1999).
  33. F. H. Peters, D. T. Cassidy, “Spatially and polarization-resolved electroluminescence of 1.3-μm InGaAsP semiconductor diode lasers,” Appl. Opt. 28, 3744–3750 (1989). [CrossRef] [PubMed]
  34. J. Yang, D. T. Cassidy, “Technique for mapping the spectral uniformity of luminescent semiconducting material,” Appl. Opt. 34, 4794–4799 (1995). [CrossRef] [PubMed]
  35. T. Arakawa, S. Tsukamoto, Y. Nagamune, M. Nishioka, “Fabrication of InGaAs strained quantum wire structures using selective-area-metal-organic chemical vapor deposition growth,” Jpn. J. Appl. Phys. 32, L1377–L1379 (1993). [CrossRef]
  36. K. Kash, B. P. Van der Gaag, D. D. Mahony, A. S. Gozdz, L. T. Florez, J. P. Harbison, M. D. Sturge, “Observation of quantum confinement by strain gradients,” Phys. Rev. Lett. 67, 1326–1329 (1991). [CrossRef] [PubMed]
  37. S. C. Jain, M. Willardson, H. Maes, “Stresses and strains in epilayers, stripes, and quantum structures of III-V compound semiconductors,” Semicond. Sci. Technol. 11, 641–671 (1996). [CrossRef]
  38. A. Gupta, G. C. Weatherly, D. T. Cassidy, D. M. Bruce, “Characterization and modeling of the strain fields associated with InGaAs layers on V-grooved InP substrates,” J. Appl. Phys. 82, 6016–6023 (1997). [CrossRef]
  39. P. D. Colbourne, “Measurement of stresses in III-V semiconductors using the degree of polarization of luminescence,” Ph.D. dissertation (McMaster University, Hamilton, Ontario, 1992).
  40. S. Timoshenko, J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951).
  41. P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, New York, 1992), pp. 161–164.
  42. K. H. Huebner, E. A. Thornton, T. G. Byrom, The Finite Element Method For Engineers, 3rd ed. (Wiley, New York, 1995), pp. 135–141.
  43. A. D. Prins, D. J. Dunstan, Compliance of InP in Properties of Indium Phosphide EMIS Datareviews Series 6 (Inspec, London, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited