OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 9 — Mar. 19, 2004
  • pp: 1863–1869

Experimental Observation of the Imbert-Fedorov Transverse Displacement after a Single Total Reflection

Frank Pillon, Hervé Gilles, and Sylvain Girard  »View Author Affiliations

Applied Optics, Vol. 43, Issue 9, pp. 1863-1869 (2004)

View Full Text Article

Acrobat PDF (131 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a simple experimental setup with which to observe the transverse shift—also known as the Imbert-Fedorov effect—that circularly or elliptically polarized optical beams undergo after a single total internal reflection on a dielectric plane. A comparison between a theoretical model based on the conservation of energy and experimental measurements shows good agreement simultaneously for longitudinal (Goos-Hänchen) and transverse (Imbert-Fedorov) displacements.

© 2004 Optical Society of America

OCIS Codes
(230.3720) Optical devices : Liquid-crystal devices
(240.6690) Optics at surfaces : Surface waves
(260.6970) Physical optics : Total internal reflection

Frank Pillon, Hervé Gilles, and Sylvain Girard, "Experimental Observation of the Imbert-Fedorov Transverse Displacement after a Single Total Reflection," Appl. Opt. 43, 1863-1869 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. H. K. Lotsch, “Reflection and refraction of a beam of light at a plane interface,” J. Opt. Soc. Am. 58, 551–561 (1968).
  2. F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. (Leipzig) 1, 333–346 (1947).
  3. F. Goos and H. Hänchen, “Neumessung des Strahlversetzungeffktes bei Totalreflexion,” Ann. Phys. (Leipzig) 2, 87–102 (1949).
  4. See, for example, C. Imbert, “L’effet inertial de spin du photon: théorie et preuve expérimentale,” Nouv. Rev. Opt. Appl. 3, 199–208 (1972), and references therein.
  5. Y. Levy and C. Imbert, “Amplification des déplacements à la réflexion totale,” Opt. Commun. 13, 43–47 (1975).
  6. O. Costa de Beauregard, C. Imbert, and Y. Lévy, “Observation of shifts in total reflection of a light beam by a multilayered structure,” Phys. Rev. D 15, 3553–3562 (1977).
  7. J. J. Cowan and B. Anicin, “Longitudinal and transverse displacements of a bounded microwave beam at total internal reflection,” J. Opt. Soc. Am. 67, 1307–1314 (1977).
  8. F. Bretenaker, A. Le Floch, and L. Dutriaux, “Direct measurement of the optical Goos-Hänchen effect in lasers,” Phys. Rev. Lett. 68, 931–933 (1992).
  9. H. Gilles, S. Girard, and J. Hamel, “A simple measurement technique of the Goos-Hänchen effect using polarization modulation and position sensitive detector,” Opt. Lett. 27, 1421–1423 (2002).
  10. F. I. Fedorov, “Theory of total reflection,” Dokl. Akad. Nauk SSR 105, 465–468 (1955).
  11. M. Born and E. Wolf, Principles of Optics 7th ed. (Cambridge U. Press, Cambridge, 1999).
  12. R. H. Renard, “Total reflection: a new evaluation of the Goos-Hänchen shift,” J. Opt. Soc. Am. 54, 1190–1197 (1964).
  13. K. Artmann, “Berechnung der Seitenversetzung des totalreflektieren Strahles,” Ann. Phys. (Leipzig) 2, 87–102 (1948).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited