OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 9 — Mar. 19, 2004
  • pp: 1892–1901

Third-dimensional finite element computation of laser cavity eigenmodes

Konrad Altmann, Christoph Pflaum, and David Seider  »View Author Affiliations


Applied Optics, Vol. 43, Issue 9, pp. 1892-1901 (2004)
http://dx.doi.org/10.1364/AO.43.001892


View Full Text Article

Enhanced HTML    Acrobat PDF (514 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new method for computing eigenmodes of a laser resonator by the use of finite element analysis is presented. For this purpose, the scalar wave equation (Δ + k2)(x, y, z) = 0 is transformed into a solvable three-dimensional eigenvalue problem by the separation of the propagation factor exp(-ikz) from the phasor amplitude (x, y, z) of the time-harmonic electrical field. For standing wave resonators, the beam inside the cavity is represented by a two-wave ansatz. For cavities with parabolic optical elements, the new approach has successfully been verified by the use of the Gaussian mode algorithm. For a diode-pumped solid-state laser with a thermally lensing crystal inside the cavity, the expected deviation between Gaussian approximation and numerical solution could be demonstrated clearly.

© 2004 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(140.3410) Lasers and laser optics : Laser resonators
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4780) Lasers and laser optics : Optical resonators
(140.6810) Lasers and laser optics : Thermal effects

History
Original Manuscript: July 18, 2003
Revised Manuscript: December 2, 2003
Published: March 20, 2004

Citation
Konrad Altmann, Christoph Pflaum, and David Seider, "Third-dimensional finite element computation of laser cavity eigenmodes," Appl. Opt. 43, 1892-1901 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-9-1892


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. E. Siegman, Lasers (University Science, Mill Valley, 1986).
  2. LASCAD, http://www.las-cad.com .
  3. K. Altmann, “Simulation software tackles design of laser resonators,” Laser Focus World 36, 293–294 (2000).
  4. A. G. Fox, T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–458 (1961).
  5. M. D. Feit, J. A. Fleck, “Spectral approach to optical resonator theory,” Appl. Opt. 20, 2843–2851 (1981). [CrossRef] [PubMed]
  6. A. E. Siegman, H. Y. Miller, “Unstable optical resonator loss calculations using the Prony method,” Appl. Opt. 9, 2729–2736 (1970). [CrossRef] [PubMed]
  7. M. Streiff, A. Witzig, W. Fichtner, “Computing optical modes for VCSEL device simulation,” IEE Proc. Optoelectron. 149, 166–173 (2002). [CrossRef]
  8. F. Ihlenburg, Finite Element Analysis of Acoustic Scattering (Springer-Verlag, New York, 1998). [CrossRef]
  9. H.-G. Roos, M. Stynes, L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations (Springer-Verlag, Berlin, 1996). [CrossRef]
  10. K. W. Morton, Numerical Solution of Convection-Diffusion Problems (Chapman & Hall, London, New York, 1996).
  11. Y. Saad, M. H. Schultz, “GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 7, 856–869 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited