OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 9 — Mar. 19, 2004
  • pp: 1902–1906

Mode-locked ytterbium fiber lasers

Lasse Orsila, Luís A. Gomes, Ning Xiang, Tomi Jouhti, and Oleg G. Okhotnikov  »View Author Affiliations


Applied Optics, Vol. 43, Issue 9, pp. 1902-1906 (2004)
http://dx.doi.org/10.1364/AO.43.001902


View Full Text Article

Enhanced HTML    Acrobat PDF (183 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact fiber laser is demonstrated with use of a Gires-Tournois compensator and a short length (2–4 cm-long) of highly doped ytterbium (Yb) fiber providing net anomalous group-velocity dispersion. With use of a novel semiconductor saturable absorber mirror based on GaInNAs structure, self-started 1.5-ps-pulse mode-locked operation was obtained at 1023 nm with a repetition rate of 95 MHz. A mode-locked Yb-doped fiber laser was developed without the use of any dispersion compensation technique. Overall group-velocity dispersion was minimized by using a short length of highly doped Yb fiber in a compact amplifying loop cavity. Self-started mode-locked operation was obtained in 980–1030-nm wavelength range with a fundamental repetition rate of 140 MHz.

© 2004 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW

History
Original Manuscript: June 2, 2003
Revised Manuscript: November 14, 2003
Published: March 20, 2004

Citation
Lasse Orsila, Luís A. Gomes, Ning Xiang, Tomi Jouhti, and Oleg G. Okhotnikov, "Mode-locked ytterbium fiber lasers," Appl. Opt. 43, 1902-1906 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-9-1902


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, U. Keller, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science 286, 1507–1512 (1999). [CrossRef] [PubMed]
  2. L. Reekie, R. J. Mears, S. B. Poole, D. N. Payne, “Tunable single-mode fiber lasers,” J. Lightwave Technol. 4, 956–960 (1986). [CrossRef]
  3. O. G. Okhotnikov, J. R. Salcedo, “Spectroscopy of the transient oscillations in a Nd3+-doped fiber laser for the four-level 4F3/2-4I11/2 (1060-nm) and three-level 4F3/2-4I9/2 (900-nm) transitions,” Appl. Phys. Lett. 64, 2619–2621 (1994). [CrossRef]
  4. C. R. O Cochláin, R. J. Mears, G. Sherlock, “Low threshold tunable soliton source,” IEEE Photon. Technol. Lett. 5, 25–28 (1993).
  5. K. Tamura, E. P. Ippen, H. A. Haus, “Optimization of filtering in soliton fiber lasers,” IEEE Photon. Technol. Lett. 6, 1433–1435 (1994). [CrossRef]
  6. L. E. Nelson, E. P. Ippen, H. A. Haus, “Broadly tunable sub-500-fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67, 19–21 (1995). [CrossRef]
  7. M. E. Fermann, M. J. Andrejco, Y. Silberberg, A. M. Weiner, “Generation of pulses shorter than 200 fs from a passively mode-locked Er fiber laser,” Opt. Lett. 18, 48–50 (1993). [CrossRef] [PubMed]
  8. H. Lim, F. Ö. Ilday, F. W. Wise, “Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser,” Opt. Lett. 28, 660–662 (2003). [CrossRef] [PubMed]
  9. H. Lim, F. Ö. Ilday, F. W. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express10, 1497–1502 (2002), http://www.opticsexpress.org .
  10. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B. 65, 277–294 (1997). [CrossRef]
  11. K. Tamura, E. P. Ippen, H. A. Haus, L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993). [CrossRef] [PubMed]
  12. K. Tamura, C. R. Doerr, L. E. Nelson, H. A. Haus, E. P. Ippen, “Technique for obtaining high-energy ultrashort pulses from an additive-pulse mode-locked erbium-doped fiber ring laser,” Opt. Lett. 19, 46–48 (1994). [CrossRef] [PubMed]
  13. V. Cautaerts, D. J. Richardson, R. Paschotta, D. C. Hanna, “Stretched pulse Yb3+ silica fiber laser,” Opt. Lett. 22, 316–318 (1997). [CrossRef] [PubMed]
  14. M. Hofer, M. E. Fermann, F. Haberl, J. E. Townsend, “Active mode locking of a neodymium-doped fiber laser using intracavity pulse compression,” Opt. Lett. 15, 1467–1469 (1990). [CrossRef] [PubMed]
  15. L. Lefort, J. H. V. Price, D. J. Richardson, G. J. Spühler, R. Paschotta, U. Keller, A. R. Fry, J. Weston, “Practical low-noise stretched-pulse Yb3+-doped fiber laser,” Opt. Lett. 27, 291–293 (2002). [CrossRef]
  16. F. X. Kärtner, J. Aus der Au, U. Keller, “Mode-locking with slow and fast saturable absorbers-what’s the difference?,” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998). [CrossRef]
  17. S. Tammela, P. Kiiveri, S. Sarkilahti, M. Hotoleanu, H. Valkonen, M. Rajala, J. Kurki, K. Janka, “Direct nanoparticle deposition process for manufacturing very short high gain Er-doped silica glass fibers,” in Proceedings of the 28th European Conference on Optical Communication, P. Danielsen, ed. (European Conference on Optical Communication, Lyngby, Denmark, 2002), Vol. 4, paper 9.4.2.
  18. O. G. Okhotnikov, T. Jouhti, J. Konttinen, S. Karirinne, M. Pessa, “1.5-μm monolithic GaInNAs semiconductor saturable-absorber mode locking of an erbium fiber laser,” Opt. Lett. 28, 364–366 (2003). [CrossRef] [PubMed]
  19. D. Korf, G. Zhang, R. Fluck, M. Moser, U. Keller, “All-in-one dispersion-compensating saturable absorber mirror for compact femtosecond laser sources,” Opt. Lett. 21, 486–488 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited