OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 9 — Mar. 19, 2004
  • pp: 1907–1913

Slab-Based Faraday Isolators and Faraday Mirrors for 10-kW Average Laser Power

Efim A. Khazanov  »View Author Affiliations


Applied Optics, Vol. 43, Issue 9, pp. 1907-1913 (2004)
http://dx.doi.org/10.1364/AO.43.001907


View Full Text Article

Acrobat PDF (155 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is shown that the use of slabs instead of rods makes it possible to fabricate Faraday isolators and Faraday mirrors operating at a multikilowatt power. Analytical dependences of thermally induced depolarization in Faraday devices on radiation power and on slab aspect ratio have been obtained.

© 2004 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(230.2240) Optical devices : Faraday effect

Citation
Efim A. Khazanov, "Slab-Based Faraday Isolators and Faraday Mirrors for 10-kW Average Laser Power," Appl. Opt. 43, 1907-1913 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-9-1907


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, and P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
  2. K. S. Lai, R. Wu, and P. B. Phua, “Multiwatt KTiOPO4 optical parametric oscillators pumped within randomly and linearly polarized Nd:YAG laser cavities,” in Nonlinear Materials, Devices, and Applications, J. W. Pierce, ed., Proc. SPIE 3928, 43–51 (2000).
  3. M. R. Ostermeyer, G. Klemz, P. Kubina, and R. Menzel, “Quasi-continuous-wave birefringence-compensated single- and double-rod Nd:YAG lasers,” Appl. Opt. 41, 7573–7582 (2002).
  4. E. A. Khazanov, “Characteristic features of the operation of different designs of the Faraday isolator for high average laser-radiation power,” Quantum Electron. 30, 147–151 (2000).
  5. A. Poteomkin, N. Andreev, E. Khazanov, A. Shaykin, V. Zelenogorsky, and I. Ivanov, “Use of scanning Hartmann sensor for measurement of thermal lensing in TGG crystal,” in Laser Crystals, Glasses, and Nonlinear Materials Growth and Characterization, Y. Y. Kalisky, ed., Proc. SPIE 4970, 10–21 (2003).
  6. E. A. Khazanov, O. V. Kulagin, S. Yoshida, and D. Reitze, “Investigation of self-induced distortions of laser radiation in lithium niobate and terbium gallium garnet,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), pp. 250–251.
  7. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
  8. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
  9. E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, and D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
  10. N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, and D. H. Reitze, “45 dB Faraday isolator for 100 W average radiation power,” Quantum Electron. 30, 1107–1108 (2000).
  11. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
  12. N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Reitze, A. M. Sergeev, and E. A. Khazanov, “The use of crystalline quartz for compensation for thermally indused depolarization in Faraday isolators,” Quantum Electron. 32, 91–94 (2002).
  13. G. Giuliani and P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
  14. I. D. Carr and D. C. Hanna, “Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B 36, 83–92 (1985).
  15. C. A. Denman and S. I. Libby, “Birefringence compensation using a single Nd:YAG rod,” in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series(Optical Society of America, Washington, D.C., 1999), pp. 608–612.
  16. V. M. Gelikonov, D. D. Gusovskii, V. I. Leonov, and M. A. Novikov, “Birefringence compensation in single-mode optical fibers,” Sov. Tech. Phys. Lett. 13, 322–323 (1987).
  17. E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001).
  18. E. A. Khazanov, A. A. Anastasiyev, N. F. Andreev, A. Voytovich, and O. V. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41, 2947–2954 (2002).
  19. E. M. Dianov, “Thermal distortion of laser cavity in case of rectangular garnet slab,” Kratk. Soobsch. Fiz. 8, 67–75 (1971).
  20. M. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” Appl. Phys. 40, 2760–2765 (1969).
  21. A. P. Voytovich and V. N. Severikov, Lasers with Anisotropic Resonators (Nauka i Tehnika, Minsk, 1988).
  22. E. A. Khazanov, “High-power propagation effects in different designs of a Faraday isolator,” in Optical Pulse and Beam Propagation II, Y. B. Band, ed., Proc. SPIE 3927, 359–367 (2000).
  23. A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, Leningrad, 1986).
  24. W. Koechner, Solid-State Laser Engineering (Springer, New York, 1999).
  25. I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, and K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27, 234–236 (2002).
  26. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
  27. J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
  28. K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
  29. E. Khazanov, “Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers,” in Solid State Lasers XII, R. Scheps, ed., Proc. SPIE 4968, 115–126 (2003).
  30. A. Ikesue, Japan Fine Ceramics Center, Nagoya, Japan (personal communication, 2002).
  31. E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27, 716–718 (2002).
  32. M. Kagan and E. Khazanov, “Features of compensation of thermally induced depolarization in polycrystalline Nd:YAG ceramic,” Quantum Electron. 33, 876–882 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited