OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 9 — Mar. 19, 2004
  • pp: 1914–1921

Wavelength control of tunable dense wavelength-division multiplexing sources by use of a Fabry–Perot etalon and a semiconductor optoelectronic diode

Chun-Liang Yang, San-Liang Lee, and Jingshown Wu  »View Author Affiliations

Applied Optics, Vol. 43, Issue 9, pp. 1914-1921 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (225 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high-resolution tunable-wavelength controller is achieved by use of an etalon for control of wavelength drift and a semiconductor optical diode (SOD) for channel recognition. The etalon provides a stable wavelength reference, and the SOD can detect mode-hopping and incomplete-tuning problems in tuning a laser. With the help of a Fabry-Perot etalon as a precise wavelength reference, the usual concern with the temperature stability of a SOD can be relaxed at least tenfold compared with wavelength control with a single SOD. We demonstrate the feasibility of monitoring tunable lasers by using a Fabry-Perot laser diode (FPLD) or a semiconductor optical amplifier (SOA). The induced voltage of the FPLD and that of the SOA are modeled with analytic expressions that can help to optimize the operation of a SOD sensor.

© 2004 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems

Original Manuscript: May 9, 2003
Revised Manuscript: November 4, 2003
Published: March 20, 2004

Chun-Liang Yang, San-Liang Lee, and Jingshown Wu, "Wavelength control of tunable dense wavelength-division multiplexing sources by use of a Fabry–Perot etalon and a semiconductor optoelectronic diode," Appl. Opt. 43, 1914-1921 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Delorme, “Widely tunable 1.55-μm lasers for wavelength-division-multiplexed optical fiber communications,” IEEE J. Quantum Electron. 34, 1706–1716 (1998). [CrossRef]
  2. D. J. Blumenthal, J. E. Bowers, L. Rau, H.-F. Chou, S. Rangarajan, W. Wang, H. N. Poulsen, “Optical signal processing for optical packet switching networks,” IEEE Commun. Mag. 41(2), 23–29 (2003). [CrossRef]
  3. D. Anthon, J. Berger, K. Cheung, A. Fennema, S. Hrinya, H. Lee, A. Tselikov, “Frequency and mode control of tunable external cavity semiconductor lasers,” in Optical Fiber Communication Conference, Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), Vol. 1, pp. 74–75.
  4. D. A. Ackerman, K. F. Dreyer, U. Koren, J. W. Stayt, S. L. Broutin, W. A. Asous, J. E. Johnson, L. J.-P. Ketelsen, K. K. Kamath, S. O’Brien, W. J. Shakespeare, M. A. Eshelman, M. M. Meyers, D. A. Snyder, E. S. Mak, “Wavelength, modal, and power stabilization of tunable electro-absorption modulated distributed Bragg reflector lasers,” presented at the International Semiconductor Laser Conference, Monterey, Calif., 26 Sept. 2000.
  5. M. Imaki, Y. Mikami, M. Sato, Y. Nishimura, A. Adachi, Y. Hirano, “Athermal birefringent solid etalon for 25 GHz-spacing built-in wavelength monitor,” in Optical Fiber Communication Conference, Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), Vol. 2, pp. 762–763.
  6. C. M. Miller, J. W. Miller, “Wavelength-locked, two-stage fibre Fabry-Perot filter for dense wavelength division demultiplexing in erbium-doped fibre amplifier spectrum,” Electron. Lett. 28, 216–217 (1992). [CrossRef]
  7. T. Niemi, M. Uusimmaa, S. Tammela, P. Heimalaia, T. Kajava, H. Ludvigsen, “Tunable silicon etalon for simultaneous spectral filtering and wavelength monitoring of a DWDM transmitter,” IEEE Photon. Technol. Lett. 13, 58–60 (2001). [CrossRef]
  8. K. R. Tamura, Y. Inoue, K. Sato, T. Komukai, A. Sugita, M. Nakazawa, “32 wavelength tunable mode-locked laser with 100-GHz channel spacing using an arrayed waveguide grating,” in Optical Fiber Communication Conference, Vol. 7 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper TuJ5.
  9. H. Li, S. Zhong, X. Yang, Y. J. Chen, D. Stone, “Full coverage multichannel wavelength monitoring circuit using centre-offset phased-array waveguide grating,” Electron. Lett. 34, 2149–2151 (1998). [CrossRef]
  10. M. Imaki, S. Yamamoto, M. Sato, Y. Nishimura, K. Masuda, S. Takagi, A. Adachi, J. Yamashita, Y. Hirano, “Wideband athermal wavelength monitor integrated wavelength temperature-tunable DFB-LD module,” Electron. Lett. 37, 1035–1036 (2001). [CrossRef]
  11. H. H. Yaffe, C. H. Henry, R. F. Kazarinov, M. A. Milbrodt, “Polarization-independent silica-on-silicon Mach-Zehnder interferometers,” J. Lightwave Technol. 12, 64–67 (1994). [CrossRef]
  12. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996). [CrossRef]
  13. T. Coroy, R. M. Measures, T. H. Wood, C. A. Burrus, “Active wavelength measurement system using an InGaAs-InP quantum-well electroabsorption filtering detector,” IEEE Photon. Technol. Lett. 8, 1686–1688 (1996). [CrossRef]
  14. A. Densmore, P. E. Jessop, “A quantum-well waveguide photodetector for high-precision wavelength monitoring about 1.55 μm,” IEEE Photon. Technol. Lett. 11, 1653–1655 (1999). [CrossRef]
  15. S.-L. Lee, Y.-Y. Hsu, C.-T. Pien, “High-resolution wavelength monitoring using differential/ratio detection of junction voltage across a diode laser,” IEEE Photon. Technol. Lett. 13, 872–874 (2001). [CrossRef]
  16. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 724–726.
  17. K. W. Goossen, J. A. Walker, S. C. Arney, “Silicon modulator based on mechanically-active anti-reflection layer with 1 Mbit/sec capability for fiber-in-the-loop applications,” IEEE Photon. Technol. Lett. 6, 1119–1121 (1994). [CrossRef]
  18. G. Sarlet, G. Morthier, R. Baets, “Control of widely tunable SSG-DBR lasers for dense wavelength division multiplexing,” J. Lightwave Technol. 18, 1128–1138 (2000). [CrossRef]
  19. H. Ishii, H. Yasaka, H. Tanobe, Y. Yoshikuni, “Wavelength stabilization of a three-electrode distributed Bragg reflector laser with longitudinal mode control,” Electron. Lett. 33, 494–496 (1997). [CrossRef]
  20. S.-L. Lee, C.-T. Pien, Y.-Y. Hsu, “Operation principles of wavelength sensing using transparent properties of semiconductor optical diodes,” J. Lightwave Technol. 19, 655–665 (2001). [CrossRef]
  21. M. J. Adams, J. V. Collins, I. D. Henning, “Analysis of semiconductor laser optical amplifiers,” IEE Proc. J. 132(1), 58–63 (1985).
  22. G. E. Shtengel, D. A. Ackerman, “Internal optical loss measurements in 1.3 μm InGaAsP lasers,” Electron. Lett. 31, 1157–1159 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited