OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 9 — Mar. 19, 2004
  • pp: 1946–1950

Efficient, High-Frequency Bulk Phase Modulator

Jonathan D. Zuegel and Douglas W. Jacobs-Perkins  »View Author Affiliations


Applied Optics, Vol. 43, Issue 9, pp. 1946-1950 (2004)
http://dx.doi.org/10.1364/AO.43.001946


View Full Text Article

Acrobat PDF (348 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An efficient, 10.4-GHz bulk phase modulator is demonstrated that produces frequency-modulated optical bandwidths in excess of 300 GHz in a double-pass configuration with modest microwave drive power. The waveguide resonator design employs velocity matching to maximize phase-modulation efficiency and a modified form of cutoff waveguide coupling to achieve a high microwave cavity <i>Q</i> factor that reduces power requirements. The measured microwave performance of the modulator agrees well with performance predicted from fully anisotropic, three-dimensional numerical simulations.

© 2004 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.2100) Materials : Electro-optical materials
(160.3730) Materials : Lithium niobate
(230.2090) Optical devices : Electro-optical devices
(230.4110) Optical devices : Modulators
(350.4010) Other areas of optics : Microwaves

Citation
Jonathan D. Zuegel and Douglas W. Jacobs-Perkins, "Efficient, High-Frequency Bulk Phase Modulator," Appl. Opt. 43, 1946-1950 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-9-1946


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
  2. S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
  3. T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997).
  4. “Two-dimensional SSD on OMEGA,” Laboratory for Laser Energetics LLE Rev. 69, 1–10, NTIS document No. DOE/SF/19460–152 (1996). Copies can be obtained from the National Technical Information Service, Springfield, Va. 22161.
  5. “Results of imploding-target burnthrough experiments using SSD smoothing,” Laboratory for Laser Energetics LLE Rev. 48, 169–178, NTIS document No. DOE/DP40200–175 (1991). Copies can be obtained from the National Technical Information Service, Springfield, Va. 22161.
  6. G. Carter, “Tunable high-efficiency microwave frequency shifting of infrared lasers,” Appl. Phys. Lett. 32, 810–812 (1978).
  7. N. H. Tran, T. F. Gallagher, J. P. Watjen, G. R. Janik, and C. B. Carlisle, “High efficiency resonant cavity microwave optical modulator,” Appl. Opt. 24, 4282–4284 (1985).
  8. T. F. Gallagher, N. H. Tran, and J. P. Watjen, “Principles of a resonant cavity optical modulator,” Appl. Opt. 25, 510–514 (1986).
  9. A. A. Godil, “Partially loaded microwave waveguide resonant standing wave electro-optic modulator,” U.S. Patent 5,414,552 (9 May 1995). This modulator is available from New Focus, Inc., San Jose, Calif. 95134; see also www.newfocus.com.
  10. F.-Z. Guo, C.-T. Yu, L. Chen, T. Kobayashi, and Y. Chen, “Quasi-velocity-matched electrooptic phase modulator for the synthesis of ultrashort optical pulses,” IEEE J. Quantum Electron. 33, 879–882 (1997).
  11. A. A. Godil, A. S. Hou, B. A. Auld, and D. M. Bloom, “Harmonic mode locking of a Nd:BEL laser using a 20-GHz dielectric resonator/optical modulator,” Opt. Lett. 16, 1765–1767 (1991).
  12. E. Bonek, M. Knecht, G. Magerl, K. Preis, and K. R. Richter, “Coupling and tuning of trapped-mode microwave resonators,” Arch. Elektr. Uebertrag. 32, 209–214 (1978).
  13. I. P. Kaminow and J. Liu, “Propagation characteristics of partially loaded two-conductor transmission line for broadband light modulators,” Proc. IEEE 51, 132–136 (1963).
  14. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
  15. Y. Ohmachi, K. Sawamoto, and H. Toyoda, “Dielectric properties of LiNbO3 single crystal up to 9 Gc,” Jpn. J. Appl. Phys. 6, 1467–1468 (1967).
  16. D. M. Pozar, Microwave Engineering, 2nd ed.(Wiley, New York, 1998).
  17. Micro-Stripes, available from Flomerics, Inc., Southborough, Mass. 01772; see also www.flomerics.com.
  18. D. Kajfez, Q Factor (Vector Fields, Oxford, Miss., 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited