OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 9 — Mar. 19, 2004
  • pp: 1951–1956

Mie-Scattering Calculation

Hong Du  »View Author Affiliations


Applied Optics, Vol. 43, Issue 9, pp. 1951-1956 (2004)
http://dx.doi.org/10.1364/AO.43.001951


View Full Text Article

Acrobat PDF (83 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The new Mie-scattering calculation is a robust and efficient algorithm used to compute light scattering from spheres. It calculates the ratio between Riccati-Bessel functions instead of the complicated logarithmic derivative. The Kapteyn inequality is used to estimate the number of significant digits of the calculated Riccati-Bessel functions and their ratio. This new algorithm is stable and accurate for both large and small particles. The implemented C++ code yields the same accurate results for both small and large particles compared with Wiscombe’s MIEV0 code in double precision. Suggestions are provided for the porting of the MIEV0 code.

© 2004 Optical Society of America

OCIS Codes
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles

Citation
Hong Du, "Mie-Scattering Calculation," Appl. Opt. 43, 1951-1956 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-9-1951


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
  2. L. Infeld, “The influence of the width of the gap upon the theory of antennas,” Q. Appl. Math. 5, 113–132 (1947).
  3. J. V. Dave, “Scattering of electromagnetic radiation by a large, absorbing sphere,” IBM J. Res. Dev. 13, 302–313 (1969).
  4. W. J. Lentz, “Generating Bessel functions in Mie scattering calculations using continued fractions,” Appl. Opt. 15, 668–671 (1976).
  5. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980).
  6. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  7. W. J. Wiscombe, “Mie scattering calculations: advances in technique and fast, vector-speed computer codes,” NCAR/TN-140+STR, NCAR Tech. Note (National Center for Atmospheric Research, Boulder, Colo., 1979, revised 1996); ftp://climate.gsfc.nasa.gov/pub/wiscombe/Single_Scatt/Homogen_Sphere/Exact_Mie/NCARMieReport.pdf.
  8. G. W. Kattawar and G. N. Plass, “Electromagnetic scattering from absorbing spheres,” Appl. Opt. 6, 1377–1382 (1967).
  9. C. Kim, N. Lior, and K. Okuyama, “Simple mathematical expressions for spectral extinction and scattering properties of small size-parameter particles, including examples for soot and TiO2,” J. Quant. Spectrosc. Radiat. Transfer 55, 391–411 (1996).
  10. M. I. Mishchenko, NASA Goddard Institute for Space Studies, New York, N.Y. (personal communication, 2002).
  11. W. A. de Rooij and C. C. A. H. van der Stap, “Expansion of Mie scattering matrices in generalized spherical functions,” Astron. Astrophys. 131, 237–248 (1984).
  12. R. T. Wang and H. C. van de Hulst, “Rainbows: Mie computations and the Airy approximation,” Appl. Opt. 30, 106–117 (1991).
  13. V. E. Cachorro and L. L. Salcedo, “New improvements for Mie scattering calculations,” J. Electromagn. Waves. Appl. 5, 913–926 (1991).
  14. L. Kai and P. Massoli, “Scattering of electromagnetic-plane waves by radially inhomogeneous spheres: a finely stratified sphere model,” Appl. Opt. 33, 501–511 (1994).
  15. Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouesbet, and G. Gréhan, “Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres,” Appl. Opt. 36, 5188–5198 (1997).
  16. W. Yang, “Improved recursive algorithm for light scattering by a multilayered sphere,” Appl. Opt. 42, 1710–1720 (2003).
  17. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge U. Press, London 1966).
  18. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1965).
  19. W. J. Wiscombe, “NoPMOM version of MIEV0” (1992), ftp://climate.gsfc.nasa.gov/pub/wiscombe/Single_Scatt/Homogen_Sphere/Exact_Mie/MVTstNew.out.
  20. G. Siu and L. Cheng, “Mie solution of light scattering from spheres of radii up to 80 λ with digit-array method,” J. Opt. Soc. Am. B 19, 1922–1929 (2002).
  21. H. Du and H. Zhang, “Ultra high precision Mie scattering calculation” (2002), http://optics.physics.miami.edu/exp/du/UltraHighMie.pdf.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited