OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 9 — Mar. 19, 2004
  • pp: 1965–1970

Time-domain terahertz study of defect formation in one-dimensional photonic crystals

Hynek Němec, Petr Kužel, Frédéric Garet, and Lionel Duvillaret  »View Author Affiliations

Applied Optics, Vol. 43, Issue 9, pp. 1965-1970 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (252 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One-dimensional photonic crystals composed of silicon and air layers with and without twinning defect (i.e., a periodicity break where one half of the photonic structure is a mirror image of the other one) are studied by means of terahertz time-domain transmission and reflection spectroscopy. The structure with defect is decomposed into building blocks: two twins and a defect. A phase-sensitive characterization in transmission and reflection allows us to fully determine the transfer matrices of any block and consequently to predict the properties of composed structures regardless of the microstructure of the constituting blocks. It is shown and experimentally demonstrated that the defect level position is controlled by the reflectance phase of the twins. Possible approach of the reflectance phase determination by use of Kramers-Kronig analysis is also discussed.

© 2004 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(300.6240) Spectroscopy : Spectroscopy, coherent transient

Original Manuscript: September 5, 2003
Revised Manuscript: November 10, 2003
Published: March 20, 2004

Hynek Němec, Petr Kužel, Frédéric Garet, and Lionel Duvillaret, "Time-domain terahertz study of defect formation in one-dimensional photonic crystals," Appl. Opt. 43, 1965-1970 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998). [CrossRef] [PubMed]
  3. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2001). [CrossRef]
  4. S. John, J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms,” Phys. Rev. Lett. 58, 2418–2421 (1990). [CrossRef]
  5. S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991). [CrossRef] [PubMed]
  6. A. Chelnokov, S. Rowson, J. M. Lourtioz, L. Duvillaret, J. L. Coutaz, “Terahertz characterisation of mechanically machined 3D photonic crystal,” Electron. Lett. 33, 1981–1983 (1997). [CrossRef]
  7. J. E. G. J. Wijnhoven, W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998). [CrossRef]
  8. H.-Y. Lee, T. Yao, “Design and evaluation of omnidirectional one-dimensional photonic crystals,” J. Appl. Phys. 93, 819–830 (2003). [CrossRef]
  9. K. M. Chen, A. W. Sparks, H. C. Luan, D. R. Lim, K. Wada, L. C. Kimerling, “SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method,” Appl. Phys. Lett. 75, 3805–3807 (1999). [CrossRef]
  10. B. Temelkuran, E. Özbay, “Experimental demonstration of photonic crystal-based waveguides,” Appl. Phys. Lett. 74, 486–488 (1999). [CrossRef]
  11. A. Chelnokov, S. Rowson, J. M. Lourtioz, L. Duvillaret, J. L. Coutaz, “Light controllable defect modes in three-dimensional photonic crystal,” Electron. Lett. 34, 1965–1967 (1998). [CrossRef]
  12. S. Y. Lin, G. Arjavalingam, “Photonic bound states in two-dimensional photonic crystals probed by coherent-microwave transient spectroscopy,” J. Opt. Soc. Am. B 11, 2124–2127 (1994). [CrossRef]
  13. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett. 68, 2023–2026 (1992). [CrossRef] [PubMed]
  14. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, “Measurement of the photon dispersion relation in two-dimensional ordered dielectric arrays,” J. Opt. Soc. Am. B 10, 322–327 (1993). [CrossRef]
  15. T. Aoki, M. W. Takeda, J. W. Haus, Z. Yuan, M. Tani, K. Sakai, N. Kawai, K. Inoue, “Terahertz time-domain study of a pseudo-simple-cubic photonic lattice,” Phys. Rev. B 64, 045106 (2001). [CrossRef]
  16. H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Yuan, “Terahertz wave dispersion in two-dimensional photonic crystals,” Phys. Rev. B 64, 045202 (2001). [CrossRef]
  17. P. L. Phillips, J. C. Knight, J. M. Pottage, G. Kakarantzas, P. St. J. Russell, “Direct measurement of optical phase in the near field,” Appl. Phys. Lett. 76, 541–543 (2000). [CrossRef]
  18. N. Tsurumachi, S. Yamashita, N. Muroi, T. Fuji, T. Hattori, H. Nakatsuka, “Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures,” Jpn. J. Appl. Phys. Part 1 38, 6302–6308 (1999). [CrossRef]
  19. E. Özbay, B. Temelkuran, “Reflection properties and defect formation in photonic crystals,” Appl. Phys. Lett. 69, 743–745 (1996). [CrossRef]
  20. B. Temelkuran, E. Özbay, M. Sigalas, G. Tuttle, C. M. Soukoulis, K. M. Ho, “Reflection properties of metallic photonic crystals,” Appl. Phys. A 66, 363–365 (1998). [CrossRef]
  21. H. Němec, L. Duvillaret, F. Quemeneur, P. Kužel, “Defect modes due to twinning in one-dimensional photonic crystals,” J. Opt. Soc. Am. B (to be published).
  22. G. Grüner, ed., Millimeter and Submillimeter-Wave Spectroscopy of Solids (Springer-Verlag, Berlin, 1998). [CrossRef]
  23. T.-I. Jeon, D. Grischkowsky, “Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy,” Appl. Phys. Lett. 72, 3032–3034 (1998). [CrossRef]
  24. A. Pashkin, M. Kempa, H. Němec, F. Kadlec, P. Kužel, “Phase-sensitive time-domain terahertz reflection spectroscopy,” Rev. Sci. Instrum. 74, 4711–4717 (2003). [CrossRef]
  25. A. Figotin, V. Gorentsveig, “Localized electromagnetic waves in a layered periodic dielectric medium with a defect,” Phys. Rev. B 58, 180–188 (1998). [CrossRef]
  26. S. F. Mingaleev, K. Busch, “Scattering matrix approach to large-scale photonic crystal circuits,” Opt. Lett. 28, 619–621 (2003). [CrossRef] [PubMed]
  27. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999), Chap. 1.6, pp. 54–74.
  28. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, “Donor and acceptor modes in photonic band structures,” Phys. Rev. Lett. 67, 3380–3383 (1991). [CrossRef] [PubMed]
  29. A. A. Asatryan, P. A. Robinson, L. C. Botten, R. C. McPhedran, N. A. Nicorovici, C. M. de Sterke, “Effects of disorder on wave propagation in two-dimensional photonic crystals,” Phys. Rev. E 60, 6118–6127 (1999). [CrossRef]
  30. T. Hattori, N. Tsurumachi, S. Kawato, H. Nakatsuka, “Photonic dispersion relation in a one-dimensional quasicrystal,” Phys. Rev. B 50, 4220–4223 (1994). [CrossRef]
  31. P. Kužel, J. Petzelt, “Time-resolved terahertz transmission spectroscopy of dielectrics,” Ferroelectrics 239, 949–956 (2000).
  32. L. Duvillaret, F. Garet, J.-L. Coutaz, “Influence of noise on the characterization of materials by terahertz time-domain spectroscopy,” J. Opt. Soc. Am. B 17, 452–461 (2000). [CrossRef]
  33. M. H. Lee, O. I. Sindoni, “Kramers-Kronig relations with logarithmic kernel and application to the phase spectrum in the Drude model,” Phys. Rev. E 56, 3891–3896 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited