OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 9 — Mar. 19, 2004
  • pp: 1971–1980

Real-time control of ultrafast laser micromachining by laser-induced breakdown spectroscopy

Tao Tong, Jinggao Li, and Jon P. Longtin  »View Author Affiliations


Applied Optics, Vol. 43, Issue 9, pp. 1971-1980 (2004)
http://dx.doi.org/10.1364/AO.43.001971


View Full Text Article

Enhanced HTML    Acrobat PDF (470 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultrafast laser micromachining provides many advantages for precision micromachining. One challenging problem, however, particularly for multilayer and heterogeneous materials, is how to prevent a given material from being ablated, as ultrafast laser micromachining is generally material insensitive. We present a real-time feedback control system for an ultrafast laser micromachining system based on laser-induced breakdown spectroscopy (LIBS). The characteristics of ultrafast LIBS are reviewed and discussed so as to demonstrate the feasibility of the technique. Comparison methods to identify the material emission patterns are developed, and several of the resulting algorithms were implemented into a real-time computer control system. LIBS-controlled micromachining is demonstrated for the fabrication of microheater structures on thermal sprayed materials. Compared with a strictly passive machining process without any such feedback control, the LIBS-based system provides several advantages including less damage to the substrate layer, reduced machining time, and more-uniform machining features.

© 2004 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.7090) Lasers and laser optics : Ultrafast lasers
(300.2140) Spectroscopy : Emission
(320.7150) Ultrafast optics : Ultrafast spectroscopy
(350.3390) Other areas of optics : Laser materials processing

History
Original Manuscript: June 25, 2003
Revised Manuscript: November 25, 2003
Published: March 20, 2004

Citation
Tao Tong, Jinggao Li, and Jon P. Longtin, "Real-time control of ultrafast laser micromachining by laser-induced breakdown spectroscopy," Appl. Opt. 43, 1971-1980 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-9-1971


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Liu, D. Du, G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997). [CrossRef]
  2. B. N. Chichkov, C. Momma, S. Nolte, F. Vonalvensleben, A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996). [CrossRef]
  3. P. Stanley, K. Venkatakrishnan, L. E. N. Lim, B. K. A. Ngoi, “Influence of femtosecond laser parameters on fabrication of photomask by direct ablation,” Lasers Eng. 13, 13–23 (2003).
  4. Q. Chen, J. P. Longtin, S. Sampath, R. J. Gambino, “Ultrafast laser micromachining and patterning of thermal spray multilayers for novel sensor fabrication,” in Proceedings of 2003 ASME Summer Heat Transfer Conference (American Society of Mechanical Engineers, New York, 2003).
  5. I. Gobernadomitre, A. C. Prieto, V. Zafiropulos, Y. Spetsidou, C. Fotakis, “On-line monitoring of laser cleaning of limestone by laser-induced breakdown spectroscopy and laser-induced fluorescence,” Appl. Spectrosc. 51, 1125–1129 (1997). [CrossRef]
  6. V. Tornari, V. Zafiropulos, A. Bonarou, N. A. Vainos, C. Fotakis, “Modern technology in artwork conservation: a laser-based approach for process control and evaluation,” Opt. Lasers Eng. 34, 309–326 (2000). [CrossRef]
  7. P. Maravelaki-Kalaitzaki, V. Zafiropulos, C. Fotakis, “Excimer laser cleaning of encrustation on pentelic marble: procedure and evaluation of the effects,” Appl. Surf. Sci. 148, 92–104 (1999). [CrossRef]
  8. S. Klein, T. Stratoudaki, V. Zafiropulos, J. Hildenhagen, K. Dickmann, T. Lehmkuhl, “Laser-induced breakdown spectroscopy for on-line control of laser cleaning of sandstone and stained glass,” Appl. Phys. A 69, 441–444 (1999). [CrossRef]
  9. T. J. Li, Q. H. Lou, Y. R. Wei, F. Huang, J. X. Dong, J. R. Liu, “Laser-induced breakdown spectroscopy for on-line control of selective removal of cobalt binder from tungsten carbide hardmetal by pulsed UV laser surface ablation,” Appl. Surf. Sci. 181, 225–233 (2001). [CrossRef]
  10. D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997). [CrossRef]
  11. X. D. Hou, B. T. Jones, “Field instrumentation in atomic spectroscopy,” Microchem. J. 66, 115–145 (2000). [CrossRef]
  12. E. H. Evans, J. B. Dawson, A. Fisher, W. J. Price, C. M. M. Smith, J. F. Tyson, “Advances in atomic emission, absorption and fluorescence spectrometry and related techniques,” J. Anal. At. Spectrom. 17, 622–651 (2002). [CrossRef]
  13. M. Autin, A. Briand, P. Mauchien, J. M. Mermet, “Characterization by emission-spectrometry of a laser-produced plasma from a copper target in air at atmospheric-pressure,” Spectrochim. Acta Part B 48, 851–862 (1993). [CrossRef]
  14. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge U. Press, Cambridge, UK, 1997). [CrossRef]
  15. K. L. Eland, D. N. Stratis, T. S. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001). [CrossRef]
  16. K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001). [CrossRef]
  17. V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta Part B 55, 1771–1785 (2000). [CrossRef]
  18. V. Margetic, K. Niemax, R. Hergenroder, “A study of non-linear calibration graphs for brass with femtosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 1003–1010 (2001). [CrossRef]
  19. F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002). [CrossRef]
  20. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry: applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001). [CrossRef]
  21. D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206 (2001). [CrossRef]
  22. J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001). [CrossRef]
  23. J. M. Anzano, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Laser-induced plasma spectroscopy for plastic identification,” Polym. Eng. Sci. 40, 2423–2429 (2000). [CrossRef]
  24. B. M. Kim, M. D. Feit, A. M. Rubenchik, B. M. Mammini, L. B. Da Silva, “Optical feedback signal for ultrashort laser-pulse ablation of tissue,” Appl. Surf. Sci. 129, 857–862 (1998). [CrossRef]
  25. S. Sampath, R. Mccune, “Thermal-spray processing of materials,” MRS Bull. 25, 12–14 (2000). [CrossRef]
  26. B. Irving, R. Knight, R. W. Smith, “The HVOF process: the hottest topic in the thermal spray industry,” Weld. J. (Miami, Fla.) 72, 25–30 (1993).
  27. A. N. Zaidel, V. K. Prokof’ev, S. M. Raiskii, V. A. Slavnyi, E. Ya. ShreiderTables of Spectral Lines (IFI/Plenum, New York, 1970). [CrossRef]
  28. V. Bulatov, R. Krasniker, I. Schechter, “Study of matrix effects in laser plasma spectroscopy by combined multifiber spatial and temporal resolutions,” Anal. Chem. 70, 5302–5311 (1998). [CrossRef]
  29. B. C. Castle, K. Talabardon, B. W. Smith, J. D. Winefordner, “Variables influencing the precision of laser-induced breakdown spectroscopy measurements,” Appl. Spectrosc. 52, 649–657 (1998). [CrossRef]
  30. M. Capitelli, F. Capitelli, A. Eletskii, “Non-equilibrium and equilibrium problems in laser-induced plasmas,” Spectrochim. Acta Part B 55, 559–574 (2000). [CrossRef]
  31. E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115–1130 (2002). [CrossRef]
  32. C. Chaleard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, C. Geertsen, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183–188 (1997). [CrossRef]
  33. B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. W. Johnston, S. Laville, F. Vidal, Y. Von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001). [CrossRef]
  34. X. L. Mao, A. C. Ciocan, O. V. Borisov, R. E. Russo, “Laser ablation processes investigated using inductively coupled plasma atomic emission spectroscopy (ICP-AES),” Appl. Surf. Sci. 129, 262–268 (1998). [CrossRef]
  35. R. A. Multari, L. E. Foster, D. A. Cremers, M. J. Ferris, “Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy,” Appl. Spectrosc. 50, 1483–1499 (1996). [CrossRef]
  36. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C: the Art of Scientific Computing (Cambridge U. Press, New York, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited