OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 1 — Jan. 1, 2005
  • pp: 149–153

Quantitative comparison of terahertz emission from (100) InAs surfaces and a GaAs large-aperture photoconductive switch at high fluences

Matthew Reid and Robert Fedosejevs  »View Author Affiliations

Applied Optics, Vol. 44, Issue 1, pp. 149-153 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (284 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



InAs has previously been reported to be an efficient emitter of terahertz radiation at low excitation fluences by use of femtosecond laser pulses. The scaling and saturation of terahertz emission from a (100) InAs surface as a function of excitation fluence is measured and quantitatively compared with the emission from a GaAs large-aperture photoconductive switch. We find that, although the instantaneous peak radiated terahertz field from (100) InAs exceeds the peak radiated signals from a GaAs large-aperture photoconductive switch biased at 1.6 kV/cm, the pulse duration is shorter. For the InAs source the total energy radiated is less than can be obtained from a GaAs large-aperture photoconductive switch.

© 2005 Optical Society of America

OCIS Codes
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

Original Manuscript: August 3, 2004
Revised Manuscript: August 3, 2004
Manuscript Accepted: September 11, 2004
Published: January 1, 2005

Matthew Reid and Robert Fedosejevs, "Quantitative comparison of terahertz emission from (100) InAs surfaces and a GaAs large-aperture photoconductive switch at high fluences," Appl. Opt. 44, 149-153 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. H. Auston, K. P. Cheung, P. R. Smith, “Picosecond photoconducting hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984). [CrossRef]
  2. X.-C. Zhang, D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326–338 (1992). [CrossRef]
  3. B. B. Hu, X.-C. Zhang, D. H. Auston, P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990). [CrossRef]
  4. N. Sarakura, H. Ohtake, S. Izumida, Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84, 654–656 (1998). [CrossRef]
  5. C. Weiss, R. Wallenstein, R. Beigang, “Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces,” Appl. Phys. Lett. 77, 4160–4162 (2000). [CrossRef]
  6. R. McLaughlin, A. Corchia, M. B. Johnston, Q. Chen, C. M. Ciesla, D. D. Arnone, G. A. C. Jones, E. H. Linfield, A. G. Davies, M. Pepper, “Enhanced coherent terahertz emission from indium arsenide in the presence of a magnetic field,” Appl. Phys. Lett. 76, 2038–2040 (2000). [CrossRef]
  7. J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Mueller, K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B. 64, 0852021–0852027 (2001). [CrossRef]
  8. D. You, R. R. Jones, P. H. Bucksbaum, D. R. Dykaar, “Generation of high-power sub-single-cycle 500-fs electromagnetic pulses,” Opt. Lett. 18, 290–292 (1993). [CrossRef] [PubMed]
  9. T. Löffler, H. G. Roskos, “Gas-pressure dependence of terahertz-pulse generation in a laser-generated nitrogen plasma,” J. Appl. Phys. 91, 2611–2614 (2002). [CrossRef]
  10. A. Gürtler, C. Winnewisser, H. Helm, P. U. Jepsen, “Terahertz propagation in the near field and far field,” J. Opt. Soc. Am. A. 17, 74–83 (2000). [CrossRef]
  11. D. You, P. H. Bucksbaum, “Propagation of half-cycle far infrared pulses,” J. Opt. Soc. Am. B. 14, 1651–1655 (1997). [CrossRef]
  12. E. Budiarto, N.-W. Pu, S. Jeong, J. Bokor, “Near-field propagation of terahertz pulses from a large-aperture antenna,” Opt. Lett. 23, 213–215 (1998). [CrossRef]
  13. P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B. 18, 313–317 (2001). [CrossRef]
  14. M. Reid, R. Fedosejevs, “Terahertz emission from (100) InAs at high excitation fluences,” Appl. Phys. Lett. (to be published).
  15. T. Hattori, K. Tukamoto, H. Nakatsuka, “Time-resolved study of intense terahertz pulses generated by a large-aperture photoconductive antenna,” Jpn. J. Appl. Phys. 40, 4907–4912 (2001). [CrossRef]
  16. G. Rodriguez, A. J. Taylor, “Screening of the bias field in terahertz generation from photoconductors,” Opt. Lett. 21, 1046–1048 (1996). [CrossRef] [PubMed]
  17. J. T. Darrow, X.-C. Zhang, D. H. Auston, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607–1616 (1992). [CrossRef]
  18. H. Takahashi, Y. Suzuki, A. Quema, M. Sakai, T. Yano, S. Ono, N. Sarakura, M. Hosomizu, T. Tsukamoto, G. Nishijima, K. Watanabe, “Magnetic-field-induced enhancement of thz-radiation power from femtosecond-laser-irradiated InAs up to 27T,” Jpn. J. Appl. Phys. 42, L532–L534 (2003). [CrossRef]
  19. H. Takahashi, Y. Suzuki, M. Sakai, S. Ono, N. Sarakura, T. Sugiura, T. Hirosumi, M. Yoshida, “Significant enhancement of terahertz radiation from InSb by use of a compact fiber laser and an external magnetic field,” Appl. Phys. Lett. 82, 2005–2007 (2003). [CrossRef]
  20. M. Hangyo, M. Migita, K. Nakayama, “Magnetic field and temperature dependence of terahertz radiation from InAs surfaces excited by femtosecond laser pulses,” J. Appl. Phys. 90, 3409–3412 (2001). [CrossRef]
  21. H. Takahashi, A. Quema, R. Yoshioka, S. Ono, N. Sarakura, “Excitation fluence dependence of terahertz radiation mechanism from femtosecond-laser-irradiated InAs under magnetic field,” Appl. Phys. Lett. 83, 1068–1070 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited