OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 1 — Jan. 1, 2005
  • pp: 60–66

Modulation effect of the atmosphere in a pyramid wave-front sensor

Joana B. Costa  »View Author Affiliations


Applied Optics, Vol. 44, Issue 1, pp. 60-66 (2005)
http://dx.doi.org/10.1364/AO.44.000060


View Full Text Article

Enhanced HTML    Acrobat PDF (271 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The pyramid wave-front sensor in its original form works with a mechanical modulation that adapts the linear range of the sensor to seeing and sensing conditions. For adaptive optics systems working in an astronomical context, the way in which the aberrations produced by the atmospheric turbulence, which are not seen by the sensor owing to its limited temporal bandwidth, act as modulators is shown. These aberrations have the same effect of increasing the linear range and localizing the measurement as does mechanical modulation. The effect of residual wave-front aberrations is estimated for some example conditions of telescope diameter, system bandwidth, wind velocity, and Fried parameter.

© 2005 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing

History
Original Manuscript: April 16, 2004
Revised Manuscript: September 21, 2004
Manuscript Accepted: October 5, 2004
Published: January 1, 2005

Citation
Joana B. Costa, "Modulation effect of the atmosphere in a pyramid wave-front sensor," Appl. Opt. 44, 60-66 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-1-60


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Ragazzoni, “Pupil plane wavefront sensing with an oscillating prism,” J. Mod. Opt. 43, 289–293 (1996). [CrossRef]
  2. S. Esposito, O. Feeney, A. Riccardi, “Laboratory test of a pyramid wavefront sensor,” in Adaptive Optical System Technology, P. L. Wizinowich, ed., Proc. SPIE4007, 416–422 (2000). [CrossRef]
  3. A. Ghedina, M. Cecconi, R. Ragazzoni, J. Farinato, A. Baruffolo, G. Crimi, E. Diolati, S. Esposito, L. Fini, M. Ghigo, E. Marchetti, T. Niero, A. Puglisi, “On sky test of pyramid wavefront sensor,” in Adaptive Optical System Technologies II, P. L. Wizinowich, D. Bonaccini, eds., Proc. SPIE4839, 869–877 (2003). [CrossRef]
  4. R. Ragazzoni, E. Diolati, E. Viard, “A pyramid wavefront sensor with no dynamic modulation,” Opt. Commun. 208, 51–60 (2002). [CrossRef]
  5. S. Esposito, A. Riccardi, “Pyramid wavefront sensor behaviour in partial correction adaptive optic systems,” Astron. Astrophys. 369, L9–L12 (2001). [CrossRef]
  6. R. Ragazzoni, J. Farinato, “Sensitivity of a pyramidic wavefront sensor in closed loop adaptive optics,” Astron. Astrophys. 305, L23–L26 (1999).
  7. C. Vérinaud, “On the nature of the measurements provided by a pyramid wave-front sensor,” Opt. Commun. 233, 27–38 (2004). [CrossRef]
  8. J. B. Costa, R. Ragazzoni, A. Ghedina, M. Carbillet, C. Verinaud, M. Feldt, S. Esposito, E. Puga, J. Farinato, “Is there need of any modulation in the pyramid wavefront sensor?” in Adaptive Optical System Technologies II, P. L. Wizinowich, D. Bonaccini, eds., Proc. SPIE4839, 288–298 (2003). [CrossRef]
  9. O. Feeney, “Theory and laboratory characterisation of novel wavefront sensor for adaptive optics systems,” Ph.D. dissertation (National University of Ireland, Galway, Ireland, 2001).
  10. R. G. Wilson, “Wavefront-error evaluation by mathematical analysis of experimental Foucault-test data,” Appl. Opt. 14, 2286–2297 (1975). [CrossRef] [PubMed]
  11. E. H. Linfoot, “On the theory of the zonal Foucault test,” Mon. Not. R. Astron. Soc. 108, 428–445 (1948).
  12. J. M. Conan, G. Rousset, P.-Y. Madec, “Wave-front temporal spectra in high-resolution imaging through turbulence,” J. Opt. Soc. Am. A 12, 1559–1570 (1995). [CrossRef]
  13. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. A 55, 1427–1435 (1965). [CrossRef]
  14. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. A 66, 207–211 (1976). fault fault [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited