OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 1 — Jan. 1, 2005
  • pp: 91–102

Lightweight diode laser spectrometer CHILD (Compact High-altitude In-situ Laser Diode) for balloonborne measurements of water vapor and methane

Wolfgang Gurlit, Rainer Zimmermann, Carsten Giesemann, Thomas Fernholz, Volker Ebert, Jürgen Wolfrum, Ulrich Platt, and John P. Burrows  »View Author Affiliations

Applied Optics, Vol. 44, Issue 1, pp. 91-102 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (2031 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new lightweight near-infrared tunable diode laser spectrometer CHILD (Compact High-altitude In-situ Laser Diode spectrometer) was developed for flights to the stratosphere as an additional in situ sensor on existing balloonborne payloads. Free-air absorption measurements in the near infrared are made with an open-path Herriott cell with new design features. It offers two individual absorption path lengths optimized for CH4 with 74 m (136 pass) and H2O with 36 m (66 pass). New electronic features include a real-time gain control loop that provides an autocalibration function. In flight-ready configuration the instrument mass is approximately 20 kg, including batteries. It successfully measured stratospheric CH4 and H2O profiles on high-altitude balloons on four balloon campaigns (Environmental Satellite validation) between October 2001 and June 2003. On these first flights, in situ spectra were recorded from ground level to 32,000-m altitude with a sensitivity of 0.1 ppm [(parts per million), ground] to 0.4 ppm (32,000 m) for methane and 0.15–0.5 ppm for water.

© 2005 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6260) Spectroscopy : Spectroscopy, diode lasers

Original Manuscript: July 29, 2003
Revised Manuscript: March 11, 2004
Manuscript Accepted: March 29, 2004
Published: January 1, 2005

Wolfgang Gurlit, Rainer Zimmermann, Carsten Giesemann, Thomas Fernholz, Volker Ebert, Jürgen Wolfrum, Ulrich Platt, and John P. Burrows, "Lightweight diode laser spectrometer CHILD (Compact High-altitude In-situ Laser Diode) for balloonborne measurements of water vapor and methane," Appl. Opt. 44, 91-102 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. SPARC (Stratospheric Processes and Their Role in Climate), Assessment of upper tropospheric and stratospheric water vapor, WCRP-113, WMO/TD Mo. 1043, (2000).
  2. IPCC “Atmospheric greenhouse gases,” in Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) (Cambridge University Press, Cambridge, UK, 2001), Chap 4, p. 248.
  3. E. J. Dlugokencky, K. A. Masarie, P. M. Lang, P. P. Tans, “Continuing decline in the growth rate of the atmospheric methane burden,” Nature 393, 447–450 (1998). [CrossRef]
  4. G. Durry, G. Megie, “Atmospheric CH4and H2O monitoring with near-infrared InGaAs laser diodes by the SDLA, a balloonborne spectrometer for tropospheric and stratospheric in situ measurements,” Appl. Opt. 38, 7342–7354 (1999). [CrossRef]
  5. G. Moreau, M. Pirre, F. Goffinont-Taupin, C. Robert, C. Camy-Peyret, S. Payan, R. Ramaroson, “Results and goals of SPIRALE after the first flight from Gap in June 1999,” in Fifteenth ESA Symposium on European Rocket and Balloon Programmes and Related Research,SP-471, 309–314 (European Space Agency, 2001).
  6. P. Werle, “Spectroscopic trace gas analysis using semiconductor diode lasers,” Spectrochim. Acta Part A 52, 805–822 (1996). [CrossRef]
  7. David S. Bomse, Alan C. Stanton, Joel A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992). [CrossRef] [PubMed]
  8. R. D. May, “Open-path, near-infrared tunable diode laser spectrometer for atmospheric measurements of H2O,” J. Geophys. Res. 103, 19161–19172 (1998). [CrossRef]
  9. D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B: Lasers Opt. 67, 275–282 (1998). [CrossRef]
  10. J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994). [CrossRef]
  11. A. W. Brewer, B. Cwilong, G. M. B. Dobson, “Measurement of absolute humidity in extremely dry air,” Proc. Phys. Soc. London 60, 52–70 (1946). [CrossRef]
  12. M. Zöger, A. Afchine, N. Eicke, M.-T. Gerhard, D. S. McKenna, U. Mörschel, U. Schmidt, V. Tan, F. Tuitjer, T. Woyke, C. Schiller, “FISH: A novel family of balloon borne and airborne Lyman-a photofragment fluorescence hygrometers,” J. Geophys. Res. 104, 1807–1816 (1999). [CrossRef]
  13. M. Zöger, A. Engel, D. S. McKenna, C. Schiller, U. Schmidt, T. Woyke, “Balloon borne in-situ measurements of stratospheric H2O, CH4and H2at mid-latitudes,” J. Geophys. Res. 104, 1817–1825 (1999). [CrossRef]
  14. E. J. Hintsa, E. M. Weinstock, J. G. Anderson, R. D. May, D. F. Hurst, “On the accuracy of in situ water vapor measurements in the troposphere and lower stratosphere with the Harvard Lyman-α hygrometer,” J. Geophys. Res. 104, 8183–8189 (1999). [CrossRef]
  15. Buck Research Inc. Specifications, Model CR-2 Cryocooled Hygrometer (BUCK RESEARCH INSTRUMENTS, LLC, Boulder, Colo., 80301).
  16. U. Schmidt, G. Kulessa, E. Klein, E.-P. Röth, P. Fabian, R. Borchers, “Intercomparison of balloon-borne cryogenic whole air samplers during the Map/Globus 1983 Campaign,” Planet. Space Sci. 35, 647–656 (1987). [CrossRef]
  17. H. Teichert, T. Fernholz, V. Ebert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt. 42, 2043–2051 (2003). [CrossRef] [PubMed]
  18. V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, H. Jaritz, “Simultaneous diode-laser-based in-situ-detection of multiple species and temperature in a gas-fired power-plant,” Proc. Combust. Inst. 28, 423–430 (2000). [CrossRef]
  19. D. R. Herriott, H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883–889 (1965). [CrossRef]
  20. D. R. Herriott, H. Kogelnik, R. Kompfer, “Off-axis path in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964). [CrossRef]
  21. C. Giesemann, “Entwicklung und Einsatz eines Diodenlaser-spektrometers zum quantitativen in-situ-Nachweis von Methan und Wasser in der Stratosphäre,” dissertation (University of Heidelberg, Heidelberg, Germany, 2003), in German.
  22. W. Gurlit, Diodenlaser für spektroskopische Anwendungen: Neue Aspekte für die Konstruktion hochempfindlicher Feldinstrumente (Cuvillier Verlag, Göttingen, 1997), in German.
  23. R. D. May, C. R. Webster, “Data processing and calibration for tunable diode laser harmonic absorption spectrometers,” J. Quant. Spectrosc. Radiat. Transfer 49, 335–347 (1993). [CrossRef]
  24. G. C. Bjorklund, “Frequency modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980). [CrossRef]
  25. G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation spectroscopy: theory of lineshapes and signal to noise analysis,” Appl. Phys. B 32, 145–152 (1983). [CrossRef]
  26. M. Barabanov, “A Linux-based real-time operating system,” M.S. thesis (New Mexico Institute of Mining and Technology, Socorro, N.Mex, 1997).
  27. W. Demtröder, Laserspektroskopie (Springer-Verlag, Berlin, 1991). [CrossRef]
  28. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The Hitran Molecular Spectroscopic Database And Hawks (Hitran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  29. L. Moretti, A. Sasso, L. Gianfrani, R. Ciurylo, “Collisional-broadened and Dicke narrowed lineshapes of H216O and H218O transitions at 1.39 μm,” J. Mol. Spectrosc. 205, 20–27 (2001). [CrossRef] [PubMed]
  30. J. S. Margolis, “Measured line positions and strengths of methane between 5500 and 6180 cm−1,” Appl. Opt. 27, 4038–4051 (1988). [CrossRef] [PubMed]
  31. B. Parvitte, V. Zéninari, I. Pouchet, G. Durry, “Diode laser spectroscopy of H2O in the 7165–7185 cm−1range for atmospheric applications,” J. Quant. Spectrosc. Radiat. Transfer 75, 481–505 (2002). [CrossRef]
  32. R. A. Toth, “Extensive measurements of H216O line frequencies and strengths: 5750 to 7965 cm−1,” Appl. Opt. 33, 4851–4867 (1994). [CrossRef] [PubMed]
  33. D. F. Hurst, G. S. Dutton, P. A. Romashkin, P. R. Wamsley, F. L. Moore, J. W. Elkins, E. J. Hintsa, E. M. Weinstock, R. L. Herman, E. J. Moyer, D. C. Scott, R. D. May, C. R. Webster, “Closure of the total hydrogen budget of the northern extratropical lower stratosphere,” J. Geophys. Res. 104, 8191–8200 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited