OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 10 — Apr. 1, 2005
  • pp: 1798–1805

Fourier-domain holographic optical coherence imaging of tumor spheroids and mouse eye

Kwan Jeong, Leilei Peng, John J. Turek, Michael R. Melloch, and David D. Nolte  »View Author Affiliations


Applied Optics, Vol. 44, Issue 10, pp. 1798-1805 (2005)
http://dx.doi.org/10.1364/AO.44.001798


View Full Text Article

Acrobat PDF (1227 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fourier-domain holography (FDH) has several advantages over image-domain holography for optical coherence imaging of tissue. Writing the hologram in the Fourier plane significantly reduces background arising from reference light scattered from the photorefractive holographic film. The ability to use FDH is enhanced by the use of a diffuse target, such as scattering tissue, rather than specular targets, because the broader angular distribution from diffuse targets is transformed into a relatively uniform distribution in the Fourier plane. We demonstrate significantly improved performance for Fourier-domain optical coherence imaging on rat osteogenic sarcoma tumor spheroids and mouse eye. The sensitivity is documented at -95 dB.

© 2005 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(090.0090) Holography : Holography
(170.1650) Medical optics and biotechnology : Coherence imaging
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW

Citation
Kwan Jeong, Leilei Peng, John J. Turek, Michael R. Melloch, and David D. Nolte, "Fourier-domain holographic optical coherence imaging of tumor spheroids and mouse eye," Appl. Opt. 44, 1798-1805 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-10-1798


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. C. Youngquist, S. Carr, and D. E. N. Davies, "Optical coherence-domain reflectometry: a new optical evaluation technique," Opt. Lett.  12, 157-160 (1987).
  2. E. A. Swanson, D. Haung, M. R. Hee, and J. G. Fujimoto, "High-speed optical coherence domain reflectometry," Opt. Lett.  17, 151-153 (1992).
  3. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, "Depth-resolved holographic imaging through scattering media by photorefraction," Opt. Lett.  20, 1331-1333 (1995).
  4. S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Depth-resolved holography through turbid media using photorefraction," IEEE J. Sel. Top. Quantum Electron.  2, 965-975 (1996).
  5. R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Holographic storage and high background imaging using photorefractive multiple quantum wells," Appl. Phys. Lett.  69, 1837-1839 (1996).
  6. R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Direct-to-video holographic readout in quantum wells for 3-D imaging through turbid media," Opt. Lett.  23, 103-105 (1998).
  7. M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, "Photorefractive holography for imaging through turbid media using low coherence light," Appl. Phys. B  70, 151-154 (2000).
  8. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science  254, 1178-1181 (1991).
  9. M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, "Femtosecond transillumination optical coherence tomography," Opt. Lett.  18, 950-952 (1993).
  10. J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Sel. Top. Quantum Electron.  5, 1205-1215 (1999).
  11. Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, "High-frame-rate, 3-D photorefractive holography through turbid media with arbitrary sources and photorefractive structured illumination," IEEE J. Sel. Top. Quantum Electron.  7, 878-886 (2001).
  12. C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, and D. D. Nolte, "High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy," Opt. Commun.  219, 87-99 (2003).
  13. P. Yu, M. Mustata, P. M. W. French, J. J. Turek, M. R. Melloch, and D. D. Nolte, "Holographic optical coherence imaging of tumor spheroids," Appl. Phys. Lett.  83, 575-577 (2003).
  14. P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, and D. D. Nolte, "Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids," Appl. Opt.  43, 4862-4873 (2004).
  15. P. Yu, L. Peng, M. Mustata, J. J. Turek, M. R. Melloch, and D. D. Nolte, "Time-dependent speckle in holographic optical coherence imaging and the health of tumor tissue," Opt. Lett.  29, 68-70 (2004).
  16. E. N. Leith and J. Upatnieks, "Wavefront reconstruction with diffused illumination and three-dimensional objects," J. Opt. Soc. Am.  54, 1295-1301 (1964).
  17. G. W. Stroke, D. Brumm, and A. Funkhouser, "Three-dimensional holography with "lensless" Fourier-transform holograms and coarse p/n Polaroid film," J. Opt. Soc. Am.  55, 1327-1328 (1965).
  18. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, "Fourier-transform holographic microscope," Appl. Opt.  31, 4973-4978 (1992).
  19. R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, "Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices," IEEE J. Sel. Top. Quantum Electron.  4, 360-369 (1998).
  20. K. Jeong, L. Peng, D. D. Nolte, and M. R. Melloch, "Fourier-domain holography in photorefractive quantum-well films," Appl. Opt.  43, 3802-3811 (2004).
  21. D. D. Nolte, D. H. Olson, G. E. Doran, W. H. Knox, and A. M. Glass, "Resonant photodiffractive effect in semi-insulating multiple quantum wells," J. Opt. Soc. Am. B  7, 2217-2225 (1990).
  22. D. D. Nolte and M. R. Melloch, "Photorefractive quantum wells and thin films," in Photorefractive Effects and Materials, D.D.Nolte, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 373-451.
  23. D. D. Nolte, "Semi-insulating semiconductor heterostructures: optoelectronic properties and applications," J. Appl. Phys.  85, 6259-6289 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited