OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 10 — Apr. 1, 2005
  • pp: 1838–1844

Measurement of particle-size distribution and concentration in heterogeneous turbid media with multispectral diffuse optical tomography

Changqing Li and Huabei Jiang  »View Author Affiliations


Applied Optics, Vol. 44, Issue 10, pp. 1838-1844 (2005)
http://dx.doi.org/10.1364/AO.44.001838


View Full Text Article

Enhanced HTML    Acrobat PDF (166 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method that is capable of extracting particle-size distribution (PSD) and concentration in heterogeneous turbid media by use of multispectral diffuse optical tomography (MSDOT). After the spectroscopic scattering images of the heterogeneous turbid media are obtained with MSDOT, the morphologic information of particles in the heterogeneities is recovered with an iterative regularized reconstruction algorithm based on Mie scattering theory when a particular form of PSD is assumed (Gaussian distribution is used in this study). The method described is tested and evaluated with both simulated and experimental data. The simulations are intended to test the sensitivity of the overall approach to noise effect. A series of phantom experiments are conducted with our newly developed ten-wavelength MSDOT system. Polystyrene microsphere suspensions contain particles of varying size from 2 to 6 μm as targets are embedded in a scattering background medium in these experiments. To achieve optimized results from experimental data, we developed a data preprocessing method for MSDOT as well as a scheme for calibrating scattering spectra. The results from both simulations and experiments show that the particle mean size and concentration can be reconstructed with acceptable accuracy, whereas the recovery of the standard deviation is sensitive to noise effect and can be as large as 86% from the experimental data.

© 2005 Optical Society of America

OCIS Codes
(290.0290) Scattering : Scattering
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles

History
Original Manuscript: July 2, 2004
Revised Manuscript: January 27, 2005
Manuscript Accepted: December 5, 2004
Published: April 1, 2005

Citation
Changqing Li and Huabei Jiang, "Measurement of particle-size distribution and concentration in heterogeneous turbid media with multispectral diffuse optical tomography," Appl. Opt. 44, 1838-1844 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-10-1838


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. B. Colak, M. van der Mark, G. t’Hooft, J. Hoogenraad, E. van der Linden, F. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999). [CrossRef]
  2. V. Ntziachristos, A. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
  3. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, S. K. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001). [CrossRef] [PubMed]
  4. X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. Fajardo, H. Jiang, “Differentiation of cysts from solid tumors in the breast with diffuse optical tomography,” Acad. Radiol. 11, 53–60 (2004). [CrossRef] [PubMed]
  5. H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, K. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194 (2002). [CrossRef] [PubMed]
  6. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552 (2004). [CrossRef] [PubMed]
  7. Q. Zhu, E. Cronin, S. Hurtzman, N. Chen, M. Huang, C. Xu, “Benign versus malignant breast masses: optical differentiation with US localization,” in Biomedical Topical Meeting on CD-ROM (Optical Society of America, Washington, DC, 2004), paper WA6.
  8. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Sterberg, K. D. Paulsen, S. P. Poplack, “Initial studies of in vivo absorbing and scattering heterogeneity in near-infrared tomographic breast imaging,” Opt. Lett. 26, 822–824 (2001). [CrossRef]
  9. Y. Xu, X. Gu, T. Khan, H. Jiang, “Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data,” Appl. Opt. 41, 5427–5437 (2002). [CrossRef] [PubMed]
  10. J. R. Mourant, A. H. Hielscher, A. A. Eick, T. M. Johnson, J. P. Freyer, “Evidence of intrinsic differences in the light scattering properties of tumorigenic and nontumorigenic cells,” Cancer Cytopathol. 84, 366–374 (1998). [CrossRef]
  11. B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties of various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993). [PubMed]
  12. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998). [CrossRef]
  13. A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002). [CrossRef] [PubMed]
  14. R. S. Cotran, S. Robbins, V. Kumar, Robbins Pathological Basis of Disease (W. B. Saunders, Philadelphia, 1994).
  15. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339–2341 (2003). [CrossRef] [PubMed]
  16. R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992). [CrossRef] [PubMed]
  17. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997). [CrossRef] [PubMed]
  18. A. M. K. Nilsson, C. Sturesson, D. L. Liu, S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37, 1256–1267 (1998). [CrossRef]
  19. M. Johns, H. Liu, “Limited possibility for quantifying mean particle size by logarithmic light-scattering spectroscopy,” Appl. Opt. 42, 2968–2671 (2003). [CrossRef] [PubMed]
  20. K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995). [CrossRef] [PubMed]
  21. N. Iftimia, H. Jiang, “Quantitative optical image reconstruction of turbid media by use of direct-current measurements,” Appl. Opt. 39, 5256–5261 (2000). [CrossRef]
  22. H. Jiang, J. Pierce, J. Kao, E. Sevick-Muraca, “Measurement of particle-size distribution and volume fraction in concentrated suspensions with photon migration techniques,” Appl. Opt. 36, 3310–3318 (1997). [CrossRef] [PubMed]
  23. H. Jiang, “Enhanced photon migration methods for particle sizing in concentrated suspensions,” AIChE J. 44, 1740–1744 (1998). [CrossRef]
  24. H. Jiang, G. Marquez, L. Wang, “Particle sizing in concentrated suspensions using steady-state, continuous-wave photon migration techniques,” Opt. Lett. 23, 394–396 (1998). [CrossRef]
  25. M. Bartlett, H. Jiang, “Measurement of particle size distribution in concentrated, rapidly flowing potassium chloride (KCl) suspensions using continuous-wave photon migration techniques,” AIChE J. 47, 60–65 (2001). [CrossRef]
  26. X. Gu, Y. Xu, H. Jiang, “Mesh-based enhancement schemes in diffuse optical tomography,” Med. Phys. 30, 861–869 (2003). [CrossRef] [PubMed]
  27. G. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  28. C. Li, H. Jiang, “A calibration method in diffuse optical tomography,” J. Opt. A: Pure Appl. Opt. 6, 844–852 (2004). [CrossRef]
  29. C. Li, H. Zhao, H. Jiang, “A multispectral three-dimensional diffuse optical mammography system,” in Biomedical Topical Meeting on CD-ROM (Optical Society of America, Washington, DC, 2004), paper WF19.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited