OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 10 — Apr. 1, 2005
  • pp: 1858–1869

Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction

Subhadra Srinivasan, Brian W. Pogue, Shudong Jiang, Hamid Dehghani, and Keith D. Paulsen  »View Author Affiliations

Applied Optics, Vol. 44, Issue 10, pp. 1858-1869 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (738 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A multispectral direct chromophore and scattering reconstruction technique has been implemented for near-infrared frequency-domain tomography in recovering images of total hemoglobin, oxygen saturation, water, and scatter parameters. The method applies the spectral constraint of the chromophores and scattering spectra directly in the reconstruction algorithm, thereby reducing the parameter space of the inversion process. This new method was validated by use of simulated and experimental data, and results show better robustness and stability in the presence of higher levels of noise. The method suppresses artifacts, especially those significant in water and scatter power images, and reduces cross talk between chromophore and scatter parameters. Variation in scattering was followed by this spectral approach successfully in experimental data from 90-mm-diameter cylindrical phantoms, and results show linear variation in scatter amplitude and reduced scattering coefficient (μs′), with total hemoglobin, oxygen saturation, and water remaining constant and quantitatively accurate. Similar experiments were carried out for varying oxygen saturation and total hemoglobin. Accurate quantification was obtained with a mean error of 7.7% for oxygen saturation and 6.2% for total hemoglobin, with minimal cross talk between different parameters.

© 2005 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6960) Medical optics and biotechnology : Tomography

Original Manuscript: August 27, 2004
Revised Manuscript: November 22, 2004
Manuscript Accepted: December 5, 2004
Published: April 1, 2005

Subhadra Srinivasan, Brian W. Pogue, Shudong Jiang, Hamid Dehghani, and Keith D. Paulsen, "Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction," Appl. Opt. 44, 1858-1869 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, O. K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001). [CrossRef] [PubMed]
  2. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York) 2, 26–40 (2000). [CrossRef]
  3. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, H. Rinneberg, “Concentration and oxygen saturation of hemoglobin of 50 breast tumors determined by time-domain optical mammography,” Phys. Med. Biol. 49, 1165–1181 (2004). [CrossRef] [PubMed]
  4. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339–2341 (2003). [CrossRef] [PubMed]
  5. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256–258 (2004). [CrossRef] [PubMed]
  6. S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Philos. Trans. R. Soc. London Ser. B 352, 717–726 (1997). [CrossRef]
  7. K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995). [CrossRef] [PubMed]
  8. M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1990). [CrossRef]
  9. B. Brandstatter, K. Hollaus, H. Hutten, M. Mayer, R. Merwa, H. Scharfetter, “Direct estimation of Cole parameters in multifrequency EIT using a regularized Gauss–Newton method,” Physiol. Meas. 24, 437–448 (2003). [CrossRef]
  10. Q. Fang, P. M. Meaney, S. D. Geimer, A. V. Streltsov, K. D. Paulsen, “Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation,” IEEE Trans. Med. Imaging 23, 475–484 (2004). [CrossRef] [PubMed]
  11. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001). [CrossRef]
  12. T. O. McBride, B. W. Pogue, U. L. Österberg, K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” in Oxygen Transport to Tissue XXI, J. F. Dunn, H. M. Swartz, eds., (Pabst, Lengerich, Germany, 2001).
  13. A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 1 (Academic, New York, 1978).
  14. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996). [CrossRef]
  15. H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, K. D. Paulsen, “Three-dimensional optical-tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003). [CrossRef] [PubMed]
  16. D. W. Marquardt, “An algorithm for least squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11, 431–441 (1963). [CrossRef]
  17. W. H. Press, S. A. Teukolsky, W. J. Vetterling, B. P. Flannery, Numerical Recipes in Fortran: the Art of Scientific Computing,2nd ed. (Cambridge U. Press, Cambridge, UK, 1986).
  18. T. O. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygenation in tissue,” Appl. Opt. 38, 5480–5490 (1999). [CrossRef]
  19. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991). [CrossRef] [PubMed]
  20. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997). [CrossRef] [PubMed]
  21. J. M. Steinke, A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27, 4027–4033 (1988). [CrossRef] [PubMed]
  22. B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993). [PubMed]
  23. K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, J. M. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging 14, 504–514 (1995). [CrossRef] [PubMed]
  24. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003). [CrossRef]
  25. X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part II—Experimental interpretation,” IEEE Trans. Med. Imaging 21, 764–772 (2002). [CrossRef] [PubMed]
  26. P. Vaupel, F. Kallinowski, P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989). [PubMed]
  27. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, K. D. Paulsen, “Validation of hemoglobin and water molar absorption spectra in near-infrared diffuse optical tomography,” in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 407–415 (2003). [CrossRef]
  28. N. Varjavand, “The interactive oxyhemoglobin dissociation curve,” http://www.ventworld.com/resources/oxydisso/dissochtml.2002 .
  29. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002). [CrossRef] [PubMed]
  30. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170–3186 (2003). [CrossRef] [PubMed]
  31. D. R. White, H. Q. Woodard, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol. 60, 907–913 (1987). [CrossRef] [PubMed]
  32. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002). [CrossRef] [PubMed]
  33. A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002). [CrossRef] [PubMed]
  34. R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photo-chem. Photobiol. 72, 383–391 (2000).
  35. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
  36. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004). [CrossRef] [PubMed]
  37. D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–238 (2004). [CrossRef] [PubMed]
  38. S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, M. R. Grove, S. K. Soho, W. A. Wells, “Electromagnetic breast imaging: average tissue property values in women with negative clinical findings,” Radiology 231, 571–580 (2004). [CrossRef] [PubMed]
  39. M. T. Mandelson, N. Oestreicher, P. L. Porter, D. White, C. A. Finder, S. H. Taplin, E. White, “Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers,” J. Natl. Cancer Inst. 92, 1081–1087 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited