Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Effects of refractive index on near-infrared tomography of the breast

Not Accessible

Your library or personal account may give you access

Abstract

Near infrared (NIR) optical tomography is an imaging technique in which internal images of optical properties are reconstructed with the boundary measurements of light propagation through the medium. Recent advances in instrumentation and theory have led to the use of this method for the detection and characterization of tumors within the female breast tissue. Most image reconstruction approaches have used the diffusion approximation and have assumed that the refractive index of the breast is constant, with a bulk value of approximately 1.4. We have applied a previously reported modified diffusion approximation, in which the refractive index for different tissues can be modeled. The model was used to generate NIR data from a realistic breast geometry containing a localized anomaly. Using this simulated data, we have reconstructed optical images, both with and without correct knowledge of the refractive-index distribution to show that the modified diffusion approximation can accurately recover the anomaly given a priori knowledge of refractive index. But using a reconstruction algorithm without the use of correct a priori information regarding the refractive-index distribution is shown as recovering the anomaly but with a degraded quality, depending on the degree of refractive index mismatch. The results suggest that provided the refractive index of breast tissue is approximately 1.3–1.4, their exclusion will have minimal effect on the reconstructed images.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Spectral priors improve near-infrared diffuse tomography more than spatial priors

Ben Brooksby, Subhadra Srinivasan, Shudong Jiang, Hamid Dehghani, Brian W. Pogue, Keith D. Paulsen, John Weaver, Christine Kogel, and Steven P. Poplack
Opt. Lett. 30(15) 1968-1970 (2005)

Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results

Hamid Dehghani, Brian W. Pogue, Steven P. Poplack, and Keith D. Paulsen
Appl. Opt. 42(1) 135-145 (2003)

Three-dimensional optical tomography: resolution in small-object imaging

Hamid Dehghani, Brian W. Pogue, Jiang Shudong, Ben Brooksby, and Keith D. Paulsen
Appl. Opt. 42(16) 3117-3128 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.