OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 10 — Apr. 1, 2005
  • pp: 1917–1933

Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model

Jarod C. Finlay and Thomas H. Foster  »View Author Affiliations

Applied Optics, Vol. 44, Issue 10, pp. 1917-1933 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (662 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present two forward-adjoint models for recovering intrinsic fluorescence spectra and hemoglobin oxygen saturation of turbid samples. The first fits measured diffuse reflectance spectra to obtain the absorption and scattering spectra of the medium, and these are then used to correct distortions imposed on the fluorescence spectrum by absorption and scattering. The second fits only the measured fluorescence spectrum to determine simultaneously the amplitudes of absorption and fluorescence basis spectra and scattering parameters. Both methods are validated with Monte Carlo simulations and experimentally in scattering phantoms containing nicotinamide adenine dinucleotide and human erythrocytes. Preliminary measurements from murine tumors in vivo are presented.

© 2005 Optical Society of America

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.7050) Medical optics and biotechnology : Turbid media

Original Manuscript: July 26, 2004
Revised Manuscript: August 25, 2004
Manuscript Accepted: October 22, 2004
Published: April 1, 2005

Jarod C. Finlay and Thomas H. Foster, "Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model," Appl. Opt. 44, 1917-1933 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Andersson-Engels, J. Johansson, K. Svanberg, “Fluorescence imaging and point measurements of tissue: applications to the demarcation of malignant tumors and athersclerotic lesions from normal tissue,” Photochem. Photobiol. 53, 807–814 (1991). [PubMed]
  2. R. Richards-Kortum, E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996). [CrossRef] [PubMed]
  3. M. Inaguma, K. Hashimoto, “Porphyrin-like fluorescence in oral cancer,” Cancer 86, 2201–2211 (1999). [CrossRef] [PubMed]
  4. R. Bissonnette, H. Zeng, D. I. McLean, M. Korbelik, H. Lui, “Oral aminolevulinic acid induces protoporphyrin IX fluorescence in psoriatic plaques and peripheral blood cells,” Photochem. Photobiol. 74, 339–345 (2001). [CrossRef] [PubMed]
  5. R. Bissonnette, H. Zeng, D. I. McLean, W. E. Schreiber, D. L. Roscoe, H. Lui, “Psoriatic plaques exhibit red autofluorescence that is due to protoporphyrin IX,” J. Invest. Dermatol. 111, 586–591 (1998). [CrossRef] [PubMed]
  6. D. J. Pappajohn, R. Pennys, B. Chance, “NADH spectrofluorometry of rat skin,” J. Appl. Physiol. 33, 684–687 (1972). [PubMed]
  7. P. G. Cordeiro, R. E. Kirschner, Q.-Y. Hu, J. J. C. Chiao, H. Savage, R. R. Alfano, L. A. Hoffman, D. A. Hidalgo, “Ultraviolet excitation fluorescence spectroscopy: a noninvasive method for the measurement of redox changes in ischemic myocutaneous flaps,” Plast. Reconstr. Surg. 96, 673–680 (1995). [CrossRef] [PubMed]
  8. L. van der Laan, A. Coremans, C. Inde, H. A. Bruining, “NADH videofluorimetry to monitor the energy state of skeletal muscle in vivo,” J. Surg. Res. 74, 155–160 (1998). [CrossRef] [PubMed]
  9. B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol. 74, 817–824 (2001). [CrossRef]
  10. J. C. Finlay, D. L. Conover, E. L. Hull, T. H. Foster, “Porphyrin bleaching and PDT-induced spectral changes are irradiance dependent in ALA-sensitized normal rat skin in vivo,” Photochem. Photobiol. 73, 54–63 (2001). [CrossRef] [PubMed]
  11. R. W. Weersink, M. S. Patterson, K. Diamond, S. Silver, N. Padgett, “Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence/reflectance ratio technique,” Appl. Opt. 40, 6389–6395 (2001). [CrossRef]
  12. C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996). [CrossRef] [PubMed]
  13. A. J. Durkin, S. Jaikumar, N. Ramanujam, R. Richards-Kortum, “Relation between fluorescence spectra of dilute and turbid samples,” Appl. Opt. 33, 414–423 (1994). [CrossRef] [PubMed]
  14. N. N. Zhadin, R. R. Alfano, “Correction of the internal absorption effect in fluorescence emission and excitation spectra from absorbing and highly scattering media: theory and experiment,” J. Biomed. Opt. 3, 171–186 (1998). [CrossRef] [PubMed]
  15. J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3583–3595 (1993). [CrossRef]
  16. M. G. Muller, I. Georgakoudi, Q. Zhang, J. Wu, M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt. 40, 4633–4646 (2001). [CrossRef]
  17. S. G. Vari, T. G. Papazoglou, V. R. Pergadia, M. Stavridi, W. J. Snyder, T. Papaioannou, J. T. Duffy, A. B. Weiss, R. Thomas, W. S. Grundfest, “Blood perfusion and pH monitoring in organs by laser induced fluorescence spectroscopy,” in Optical Biopsy, R. Cubeddu, S. Svanberg, H. van den Bergh, eds., Proc. SPIE2081, 117–128 (1993). [CrossRef]
  18. R. E. N. Shehada, V. Z. Marmarelis, H. N. Mansour, W. S. Grundfest, “Laser induced fluorescence attenuation spectroscopy: detection of hypoxia,” IEEE Trans. Biomed. Eng. 47, 301–312 (2000). [CrossRef] [PubMed]
  19. R. J. Crilly, W.-F. Cheong, B. C. Wilson, J. R. Spears, “Forward-adjoint fluorescence model: Monte Carlo integration and experimental validation,” Appl. Opt. 36, 6513–6519 (1997). [CrossRef]
  20. C. W. Maynard, “An application of the reciprocity theorem to the acceleration of Monte Carlo calculations,” Nucl. Sci. Eng. 10, 97–101 (1961).
  21. M. L. Williams, “Generalized contribution response theory,” Nucl. Sci. Eng. 108, 355–383 (1991).
  22. E. L. Hull, T. H. Foster, “Steady-state reflectance spectroscopy in the P3 approximation,” J. Opt. Soc. Am. A 18, 584–599 (2001). [CrossRef]
  23. A. Kienle, M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41, 2221–2227 (1996). [CrossRef] [PubMed]
  24. S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. Mueller, D. Sliney, eds., Vol. IS5 of SPIE Institute Series (SPIE Press, Bellingham, Wash., 1989), pp. 102–111.
  25. E. L. Hull, M. G. Nichols, T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998). [CrossRef] [PubMed]
  26. J. C. Finlay, T. H. Foster, “Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady state diffuse reflectance at a single, short source-detector separation,” Med. Phys. 31, 1949–1959 (2004). [CrossRef] [PubMed]
  27. J. Lee, B. M. Fenton, C. J. Koch, J. G. Frelinger, E. M. Lord, “Interleukin 2 expression by tumor cells alters both the immune response and the tumor microenvironment,” Cancer Res. 58, 1478–1485 (1998). [PubMed]
  28. J. C. Finlay, T. H. Foster, “Effect of pigment packaging on diffuse reflectance spectroscopy of samples containing red blood cells,” Opt. Lett. 29, 965–967 (2004). [CrossRef] [PubMed]
  29. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing,2nd ed. (Cambridge University Press, New York, 1992).
  30. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10 in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4515 (1991). [CrossRef] [PubMed]
  31. K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992). [CrossRef] [PubMed]
  32. G. A. Wagnières, W. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998). [CrossRef] [PubMed]
  33. A. V. Hill, “The possible effects of the aggregation of the molecules of hemoglobin on its dissociation curves,” J. Physiol. (Proc.) 40, iv–vii (1910).
  34. A. Zwart, G. Kwant, B. Oeseburg, W. G. Zijlstra, “Human whole blood oxygen affinity: Effect of temperature,” J. Appl. Physiol. 57, 429–434 (1984).
  35. I. S. Saidi, S. L. Jacques, F. K. Tittle, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Opt. 34, 7410–7418 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited