OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 10 — Apr. 1, 2005
  • pp: 1948–1956

Optimal linear inverse solution with multiple priors in diffuse optical tomography

Ang Li, Greg Boverman, Yiheng Zhang, Dana Brooks, Eric L. Miller, Misha E. Kilmer, Quan Zhang, Elizabeth M. C. Hillman, and David A. Boas  »View Author Affiliations


Applied Optics, Vol. 44, Issue 10, pp. 1948-1956 (2005)
http://dx.doi.org/10.1364/AO.44.001948


View Full Text Article

Acrobat PDF (575 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A general framework for incorporating single and multiple priors in diffuse optical tomography is described. We explore the use of this framework for simultaneously utilizing spatial and spectral priors in the context of imaging breast cancer. The utilization of magnetic resonance images of water and lipid content as a statistical spatial prior for the diffuse optical image reconstructions is also discussed. Simulations are performed to demonstrate the significant improvement in image quality afforded by combining spatial and spectral priors.

© 2005 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5280) Medical optics and biotechnology : Photon migration
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.6960) Medical optics and biotechnology : Tomography

Citation
Ang Li, Greg Boverman, Yiheng Zhang, Dana Brooks, Eric L. Miller, Misha E. Kilmer, Quan Zhang, Elizabeth M. C. Hillman, and David A. Boas, "Optimal linear inverse solution with multiple priors in diffuse optical tomography," Appl. Opt. 44, 1948-1956 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-10-1948


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Yodh and B. Chance, "Spectroscopy and imaging with diffusing light," Phys. Today  48, 34-40 (1995).
  2. S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl.  15, R41-R93 (1999).
  3. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, "Imaging the body with diffuse optical tomography," IEEE Signal Process. Mag.  18, 57-75 (2001).
  4. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, "Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head," Appl. Opt.  36, 21-31 (1997).
  5. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, L. C. T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, "A novel method for fast imaging of brain function, non-invasively, with light," Opt. Express  2, 411-423 (1998), http://wwwopticsexpress.org.
  6. A. Bluestone, G. Abdoulaev, C. Schmitz, R. Barbour, and A. Hielscher, "Three-dimensional optical tomography of hemodynamics in the human head," Opt. Express  9, 272-286 (2001), http://www.opticsexpress.org.
  7. M. A. Franceschini and D. A. Boas, "Noninvasive measurement of neuronal activity with near-infrared optical imaging," Neuroimage  21, 372-386 (2004).
  8. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology  218, 261-266 (2001).
  9. J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, "Three-dimensional time-resolved optical tomography of a conical breast phantom," Appl. Opt.  40, 3278-3287 (2001).
  10. H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, "Three-dimensional optical tomographic imaging of breast in a human subject," IEEE Trans. Med. Imaging  20, 1334-1340 (2001).
  11. R. Barbour, H. Graber, Y. Pei, S. Zhong, and C. Schmitz, "Optical tomographic imaging of dynamic features of dense-scattering media," J. Opt. Soc. Am. A  18, 3018-3036 (2001).
  12. E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol.  46, 1117-1130 (2001).
  13. Y. Xu, N. Iftimia, H. B. Jiang, L. L. Key, and M. B. Bolster, "Imaging of in vitro and in vivo bones and joints with continuous-wave diffuse optical tomography," Opt. Express  8, 447-451 (2001), http://www.opticsexpress.org.
  14. A. Hielscher, A. Bluestone, G. Abdoulaev, A. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, "Near-infrared diffuse optical tomography," Dis. Markers  18, 313-337 (2002).
  15. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, "Concurrent MRI and diffuse optical tomography of breast after Indocyanine Green enhancement," Proc. Natl. Acad. Sci. USA  97, 2767-2772 (2000).
  16. B. A. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, "Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities," IEEE J. Sel. Top. Quantum Electron.  9, 199-209 (2003).
  17. Q. Zhu, T. Durduran, V. Ntziachristos, M. Holboke, and A. G. Yodh, "Imager that combines near-infrared diffusive light and ultrasound," Opt. Lett.  24, 1050-1052 (1999).
  18. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, "Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt.  42, 5181-5190 (2003).
  19. X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, "Diffuse optical tomography with physiological and spatial a priori constraints," Phys. Med. Biol.  49, N155-N163 (2004).
  20. E. M. C. Hillman, "Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications," Ph.D. dissertation (University of London, London, UK, 2002).
  21. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, "Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography," Opt. Lett.  28, 2339-2341 (2004).
  22. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, "Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography," Opt. Lett.  29, 256-258 (2004).
  23. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, "Sources of absorption and scattering contrast for near-infrared optical mammography," Acad. Radiol.  8, 211-218 (2001).
  24. G. Glover and E. Schneider, "3-point Dixon technique for true water fat decomposition with BO inhomogeneity correction," Magn. Reson. Med.  18, 373-381 (1991).
  25. M. A. O'Leary, "Imaging with diffuse photon density waves," Ph.D. dissertation (University of Pennsylvania, Philadelphia, Pa., 1996).
  26. M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties," Appl. Opt.  28, 2331-2336 (1989).
  27. B. W. Pogue and M. S. Patterson, "Frequency-domain optical-absorption spectroscopy of finite tissue volumes using diffusion-theory," Phys. Med. Biol.  39, 1157-1180 (1994).
  28. A. Dale and M. Sereno, "Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction - a linear approach," J. Cogn. Neurosci.  5, 162-176 (1993).
  29. A. Liu, A. Dale, and J. Belliveau, "Monte Carlo simulation studies of EEG and MEG localization accuracy," Hum. Brain Mapp.  16, 47-62 (2002).
  30. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, "Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis," Opt. Lett.  26, 701-703 (2001).
  31. M. Schweiger and S. R. Arridge, "Optical tomographic reconstruction in a complex head model using a priori region boundary information," Phys. Med. Biol.  44, 2703-2721 (1999).
  32. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, "Spatially variant regularization improves diffuse optical tomography," Appl. Opt.  38, 2950-2961 (1999).
  33. D. J. Hawrysz and E. M. Sevick-Muraca, "Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents," Neoplasia  2, 388-417 (2000).
  34. S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. Cerussi, A. Durkin, B. Tromberg, and O. Nalcioglu, "Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms," Technol. Cancer Res. Treat.  2, 563-569 (2003).
  35. R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, "A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient," Phys. Med. Biol.  45, 1051-1070 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited